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When Brownian diffusion is 
not Gaussian
Bo Wang, James Kuo, Sung Chul Bae and Steve Granick

It is commonly presumed that the random displacements that particles undergo as a result of the thermal 
jiggling of the environment follow a normal, or Gaussian, distribution. Here we reason, and support with 
experimental examples, that non-Gaussian diffusion in soft materials is more prevalent than expected.

Fickian diffusion is the dominant form 
of molecular and supramolecular 
transport. It is also the simplest 

time-dependent random process: a 
random walk for which the mean square 
displacement (MSD) is proportional to 
elapsed time. In fact, Einstein’s celebrated 
analysis of Brownian motion assumes 
that big particles in a fast-moving small-
molecule solvent follow random walks1. 
The assumption was based on an extreme 
separation of timescales — associated 
with the slow-moving particle and the 
fast-wiggling solvent molecules — which 
leads to the classic statistical-mechanics 
treatment embodying a coarse-grained 
fluctuating force as a Gaussian-distributed 
stochastic temporal series2. Indeed, when 
random walks are viewed as a succession 
of steps, it follows from the central limit 
theorem that for sufficiently long times 
the dynamics have to be Gaussian and 
the diffusion Fickian3. Yet recent direct 
observations in systems without a large 
separation of timescales — for example, 
the diffusion of colloids on phospholipid 
fluid tubules and in biofilament networks4,5 
(Fig. 1a) — repeatedly find the distribution 
of displacements in Fickian diffusion 
to deviate from Gaussian (Fig. 1b). 

System-specific interpretations have 
been proposed6,7 but the finding of non-
Gaussian Brownian diffusion calls for a 
general perspective.

Intriguingly, non-Gaussian probability 
distributions of mobility are increasingly 
recognized in a variety of physicochemical 
and socio-economical systems: Brownian 
motion in supercooled liquids8–12 and 
close to jamming transitions13–19, far-from-
equilibrium systems such as granular gas 
and plasma20–23, flow and drainage24–28, 
friction6,29,30, turbulence31,32 and also 
financial and political fluctuations33,34. 
With this Commentary we wish to 
draw attention to the common thread: 
slowly varying, heterogeneous fluctuations 
of the environment (Fig. 1c) that lead 
to the observation of non-Gaussian 
behaviour at comparable or slower 
timescales than that for the onset of 
Fickian diffusion (Fig. 1d).

Patterns of non-Gaussian diffusion
As long as diffusion remains Fickian, 
non-Gaussian distributions of particle 
displacements (here denoted by 
the function Gs(r,t), where r(t) is 
the displacement at time t) spread 
proportionally to the square root of 

elapsed time and with the diffusion 
coefficient D. Generally, the central portion 
of a non-Gaussian distribution function can 
be approximated by a Gaussian function, 
Gs(x,t) ∝ exp[−x 2/2σ2(t)], with width σ and, 
where x is one-dimensional displacement 
whereas the remaining tail can roughly 
be described by an exponential curve, 
Gs(x,t) ∝ exp[−|x|/λ(t)], with exponent 
1/λ, where λ is the characteristic decay 
length. Hence, the Gaussian centre and 
the exponential tail can be identified with 
hypothetical diffusion coefficients DGauss and 
Dtail, respectively, differing from the average 
diffusivity D. Decoupled diffusivities can 
be found for instance in random walks 
in dense colloidal suspensions, for which 
microscopic motion splits into trapped 
and hopping dynamics10–13. Yet the general 
phenomenology has been observed in 
a broader range of experimental and 
simulation work4–34. As illustrated in Fig. 2, 
Gs(r,t) falls into four families according 
to whether the exponential tails are 
larger, comparable to, or smaller than the 
average diffusivity.

As to the temporal evolution of these 
distributions, there are notable general 
trends. Typically (but not exclusively) 
the central portion of the distribution 
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becomes less and less Gaussian with elapsed 
time when considering displacements 
normalized by the square root of time (this 
is consistent with the arguments presented 
below about convergence of underlying 
elementary fluctuations). During this 
time, motion is Brownian yet the system 
does not sample all possible dynamic 
states (in other words, for insufficiently 
long times, even Brownian motion is not 
ergodic). Of course, at sufficiently long 
times the distributions revert to Gaussian 
as dictated by the central limit theorem. 
For those cases in which the crossover from 
non-Gaussian to Gaussian distribution 
is observed with increasing time over 
experimentally accessible timescales, 
such as in nanoparticle diffusion on 
fluctuating lipid tubules4, the reversion 
initiates at small normalized displacements. 
Non-Gaussian yet Fickian behaviour 
normally spans many decades in time, 
making the crossover to Gaussian difficult 
to access in experiments.

Liposome diffusion in nematic solutions
We next discuss non-Gaussian diffusion 
by way of a case study. Using single-
particle tracking4, we observed Fickian yet 
non-Gaussian diffusion of fluorescently 
tagged unilamellar lipid vesicles (liposomes) 
diffusing in (nematic) solutions of aligned 
F-actin filaments (see Methods for details 
on sample preparation and measurements).

We learned that in this system multiple 
non-Gaussian displacement distributions 
coexist. First, we observed Brownian 
trajectories uniaxially stretching in the 
direction of the nematic director (the 
direction parallel to the long axis of 
the filaments), as expected35 (Fig. 3a). 
In fact, the angular dispersion of the 
nematic director agreed with that of a 
solution of F-actin filaments as reported 
before36. We then calculated the one-
dimensional average MSD (Fig. 3b) 
and the displacement distributions 
(Fig. 3c), which show Fickian diffusion 
and non-Gaussian behaviour in both the 
parallel and perpendicular directions to 
the director. In the perpendicular direction 
the distribution shows exponential tails 
for times up to 2 s, whereas in the parallel 
direction the tails and the central portion 
of the distribution can be fitted with 
Gaussian functions, albeit of different 
widths. For longer time intervals, the 
central portion sharpened slightly 
whereas the tail spread as the square root 
of elapsed time (λ2 ∝ t and σ2 ∝ t for the 
perpendicular and parallel directions, 
respectively), implying D⊥

tail ≈ 0.15 μm2 s−1 
and D||

tail ≈ 1.4 μm2 s−1. In comparison, 
the average diffusivities corresponding to 

the MSD data are D⊥
ave = 0.45 μm2 s−1 and 

D||
ave = 1.1 μm2 s−1. Although we expected 

Gaussian statistics at sufficiently long times, 
we did not observe this in the time window 
the experiments were carried out in, which 
was limited by the average time interval the 
liposomes stay within the depth of focus 
of the microscope. We attempted to access 
Gaussian diffusion through the alteration 
of the environmental dynamics, either 
by cutting the filaments down to 3 μm 
in length with gelsolin37, which speeds 
up their longitudinal relaxation, or by 
adding Mg2+ ions up to a concentration of 
16 mM, which causes transient bridging of 
neighbouring filaments35. However, both 
attempts caused negligible perturbations 
to liposome diffusion. Non-Gaussian 
behaviour seemed to robustly span 
broad timescales.

Physical meaning of non-Gaussianity
We propose that a simple and physically 
motivated interpretation of non-Gaussian 
diffusion can be attained if it is described by 
the convolution of Gaussian, independently 
diffusive processes4. In a general context, 
this is the statistical-mechanics approach 
of decomposing complex processes into 
normal modes, and it bears direct relevance 
to systems with different microscopic 
origins for the dynamic heterogeneity, such 
as activated hopping and turbulent flow 
(indeed, a parallel analysis of probability 
distribution functions in random flows was 
reported32). Mathematically,

	 Gs(x,t) = ∫P(D) ∙ g (x | D) ∙ dD� (1)

where P(D) is the effective distribution 
of diffusivities, which reflects 
physically the temporal correlation 
of microscopic fluctuations2, and  
g (x | D) = 1/√4πDt exp(−x 2/4Dt). 

Equation (1) does not necessarily 
imply that non-Gaussian diffusive systems 
have multiple diffusion coefficients; after 
all, diffusivity is an averaged quantity. 
Instead, the independently diffusive 
processes pertain intermittently to the 
same diffusing object. This is supported by 
observations of positive time correlation 
for displacement amplitudes — large 
displacements are likely to be followed by 
large displacements — despite the absence 
of directional correlation4.

Figure 4 shows the distribution of 
diffusivities P(D) obtained from the 
displacement distribution Gs(x,t) for the 
diffusion of liposomes in nematic solutions 
of actin filaments (see Methods). The 
sharp peak approaching zero diffusivity 
corresponds to the ‘dynamically trapped’ 
regime (slow diffusion), and the broad 
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Figure 1 | Peculiarities of Brownian diffusion 
in soft materials where the environment 
fluctuates slowly on broad timescales. a, Slow 
environmental relaxation is common in soft 
matter, exemplified here by colloidal particles 
diffusing in an environment of biopolymer 
filaments and phospholipid tube assemblies. 
b, The distributions of displacements of objects 
diffusing a distance r in a certain time t in a 
slowly relaxing environment can be described 
with a non-Gaussian probability distribution 
function, Gs(r,t), which can be decomposed into 
a set of elementary diffusive Gaussian processes 
(white curves). c, Environmental fluctuations can 
span a wide range of times (or frequencies), as 
illustrated by the woodcut print The Great Wave 
from the Japanese artist Katsushika Hokusai. 
d, We speculate that before the emergence of 
Gaussian behaviour at time τclt as ultimately 
demanded by the central limit theorem, Fickian 
diffusion should be observed starting at an earlier 
time, τFick, which exceeds the average relaxation 
time of the environment, <τenv>, but not its full 
range of fluctuation. Panels: a, courtesy of Rui Lu; 
c, © Getty Images.
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peaks near the average diffusion coefficients 
indicate that that the environmental noise 
driving the motion of the probe (fast 
diffusion) can be decomposed into elements 
of a large spectral span. Here, the separation 
of the distribution of diffusivities into 
slow and fast portions does not necessarily 
indicate a decoupling into slow and fast 
particle populations, as commonly occurs 
in gels and glasses14,18,38; indeed, this is not 
observed in this system (Fig. 3a). Instead, 
we envisage that the separation and broad 
distribution of diffusivities stem from 
the heterogeneity of the environment, 
which is reflected in the dynamics of the 
probe39. The subtle difference between the 
spectra of diffusivities for the directions 
parallel and perpendicular to the filaments 
(Fig. 4a) becomes clear when they 
are plotted on semilogarithmic scales 
(Fig. 4b): the decay of the diffusivity curves 
past the broad peaks is slower for the 
perpendicular direction.

Interestingly, the spectra of diffusivities 
suggest a simple reason why exponential 
displacement distributions are often 
reported in the literature. For large D, 
Gs(x,t) can be approximated by steepest 
descent analysis to Gs(x,t) ~∫1/√D ∙ exp 
[ln(P(D)) − x 2/4Dt] ∙dD. In the limit 
of constant ∂ln(P(D))/∂D, Gs(x,t) is 
exponential whereas it is closer to Gaussian 
when ∂ln(P(D))/∂D is a strong function 
of D. In reality, the measured tails would 
fall between these two limits, yet because 
of the necessarily limited experimental 
dynamic range, the tails tend to appear 
exponential. In physical terms, the more 
heterogeneous the dynamics is in regimes 
of large amplitude, the closer to exponential 
the displacement distributions are 
anticipated to be.

Bound by the central limit theorem
Our analysis suggests criteria that can 
be used to guess the shortest timescale 
for which the displacement distribution 
becomes Gaussian, as ultimately required by 
the central limit theorem. If displacement 
fluctuations are composed of intrinsically 
non-Gaussian processes, then P(D) is a 
mathematical transform of orthogonal 
fluctuation modes. Thus, the distribution 
function will converge to a Gaussian at 
times greater than the correlation time 
of the fluctuations. This should be the 
case for systems with ‘coloured’ noise — 
that is, noise with unevenly distributed 
frequencies — such as proteins diffusing 
on lipid membranes with power-law 
fluctuations4,40. In principle, this argument 
also applies to Brownian motion close to the 
transition from the ballistic to the diffusive 
regimes, when hydrodynamic memory 

exerts ‘coloured’ thermal fluctuations 
with timescales comparable to those of 
diffusion41. Hence, it is reasonable to expect 
diffusive Brownian motion to be transiently 
non-Gaussian during the initial time of 
this transition. Still, this hypothesis needs 
to be tested.

However, if P(D) characterizes 
displacement fluctuations arising from 
physical heterogeneity in time or space, or 
both, each elementary step in a random 
walk can be thought of as effectively 
sampling the convolution of all possible 
microscopic states, provided that the 
time and length scales of the step are 
larger than those of the heterogeneities. 
Therefore, when the environment relaxes 
more slowly than the time window in 
which measurements are performed 
(the characteristic time is of the order of 
seconds for the F-actin solution studied 
here37,39), the steps converge to an identical 
function only at longer timescales, and 
Gaussian behaviour emerges gradually at 
even longer times than are experimentally 
accessible. Of course, the argument 
supposes that P(D) is invariant in time, 
but this is supported by the data in Fig. 4, 
and it seems physically unlikely that the 

distribution of diffusivities could evolve 
with time while maintaining a constant 
average value. This argument illustrates 
why non-Gaussian behaviour can 
reasonably be expected to span orders of 
magnitude in time.

A speculative look forward
Our analysis implies that the elementary 
processes underlying diffusive transport 
are stationary and ergodic at sufficiently 
long times — that is, at equilibrium. 
This hypothesis is supported by the 
experimental observations from two 
aspects. First, single-particle trajectories 
exhibited no variation beyond statistical 
spreading due to a finite number of data 
points, and second, no ageing in terms 
of dynamics was noticed. Therefore, 
our analysis does not apply to glasses 
and gels, notwithstanding the fact that 
the displacement distributions for these 
systems11–18 (in some cases with exponential 
tails with λ ∝ √t ) and for the physical 
cases discussed here are alike. Actually, the 
similarity suggests that mobile particles 
in dynamically heterogeneous glassy 
systems might possess diffusive character. 
However, exploring this possibility will 
require experimental approaches that are 
capable of capturing with sufficient spatial 
and temporal resolution the large and 
rare displacements of mobile particles in 
glasses. In fact, in practice they have been 
considered as instantaneous hops13.

It may be tempting to cast the current 
discussion in the context of the vast 
theoretical literature on sub-diffusion, in 
other words, of those diffusion processes 
for which MSDs grow sub-linearly 
with elapsed time. The major classes of 
stochastic models are the continuous-time 
random walk and the fractional Brownian 
motion42,43. Generally, continuous-time 
random walk assumes stochastic switching 
in time between two states — wait and 
jump — and leads to ergodicity breaking, 
and fractional Brownian motion assumes 
long-ranged temporal correlation of 
random fluctuations. Neither of these 
assumptions was confirmed in the systems 
that we have explored4. It is certainly true 
that it is possible to construct dynamics 
consistent with Fickian and non-Gaussian 
behaviour using these two models 
under special situations; for example, 
continuous-time random walk with 
truncated waiting-time distributions and 
finite jump-length variances. As this and 
similar lines of reasoning require additional 
assumptions about the temporal nature 
of the dynamical correlations, on physical 
grounds we expect that such detailed 
mechanisms should vary from system to 
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Figure 2 | Non-Gaussian yet Fickian diffusion 
can be described with four types of probability 
distributions, plotted here semilogarithmically 
against displacement. a–c, The central portion 
is commonly Gaussian with variance σ2, but it is 
common to find tails described by exponential 
functions with exponents that scale with the 
square root of time, λ(t) ∝ √t. The Gaussian centre 
and exponential tails can combine in three generic 
ways, depending on their relative position. d, It 
is also possible that the central and tail portions 
are both Gaussian but with different variance. 
For diffusion in two and three dimensions, the 
probability is usually normalized by sampling 
area (2πr for two dimensions, 4πr2 for three 
dimensions). The dynamic range typically spans 
several decades in probability.

© 2012 Macmillan Publishers Limited. All rights reserved



484	 NATURE MATERIALS | VOL 11 | JUNE 2012 | www.nature.com/naturematerials

commentary

system. However, the phenomenological 
behaviour seems to be rather generic. 
Looking to the future, it is evident that this 
will be a worthwhile direction to pursue to 
statistically distinguish between detailed 
candidate mechanisms and to explore the 
physical grounds of various mathematical 
descriptions in a system-specific manner. 
As current mathematical reasoning has 
been aimed at describing sub-diffusion, not 
the Fickian diffusion emphasized here, it 
seems that progress in expanding currently 
available statistical measures44,45 can 
be expected.

Clearly, assuming that Fickian processes 
are Gaussian may lead to erroneous 
conclusions, in particular for small 
systems for which sampled displacement 
data may fall in the central, Gaussian 

portion of the non-Gaussian displacement 
probability distribution. This is an 
underappreciated pitfall that is often made 
in the interpretation of data from single-
molecule imaging. The assumption of an 
underlying Gaussian process can also lead 
to errors when performing the inversion 
of displacement measurements, which is 
common practice when analysing scattering 
data obtained in Fourier space, for example.

With these issues in mind, we 
emphasize the experimental desirability 
of accumulating huge data sets, spanning 
orders of magnitude of probability 
distribution so as to reveal rare events. 
Admittedly, this can be tedious, yet it is 
often crucial to discriminate the nature 
of particle motion, particularly when 
the dynamics is heterogeneous, or not in 

equilibrium. Large statistics of this sort 
have become manageable to gather from 
single-particle tracking4,39, as illustrated 
in Fig. 3; the spirit is to image thousands 
or even millions of trajectories without 
pre-selection. Moreover, transparent 
weighting analysis enables reconstruction 
of the dynamic path in trajectory space38,46, 
where dynamics are not only associated 
with time and space, but also history.

From a practical viewpoint, it is 
fair to ask why all this matters, as the 
non-Gaussian character mostly appears in 
the tails of the distributions, and thus with 
low probability. The answer is that this can 
be at the heart of the understanding of the 
physics of soft-matter systems, especially 
in those where rare events dominate the 
long-time dynamics. Apart from classical 
examples, such as relaxation, transport 
and reaction in complex media47–50, we 
anticipate intriguing developments in 
materials science involving triggered 
actions in which diffusion, in a first 
step of a process, sets off a cascade of 
subsequent processes. In biology there are 
many examples of this, such as signalling 
and metabolite shuttling51, and materials 
scientists are discovering the usefulness 
of triggered actions in applications 
involving pathway-dependent or kinetically 
controlled processes52,53. Furthermore, the 
emerging field of active matter concerns 
itself with internally driven systems that 
sample rare events more frequently5,7,54–56, 
likewise highlighting the significance of 
non-Gaussian distributions. Even more 
broadly, we envisage that in systems with 
first-passage processes — such as targeting, 
translocation, triggering, criticality and 
resonance57,58 — rare fluctuations may 
dominate the systems’ dynamics and induce 
relevant transitions. Certainly, Fickian yet 
non-Gaussian diffusion will lead us to the 
discovery of unexpected phenomena.

Methods
Sample preparation and particle 
tracking. Following N2 drying and 
hydration of the lipids, liposomes dyed 
with 2% N-(lissamine-rhodamine B)-
dioleoylphosphatidylethanolamine 
(RhB-DOPE) were prepared through 
a two-step ultrasonication procedure: 
bath sonication for 10 min, and tip 
sonication for 1 min (Branson sonifier 
at 65% amplitude, that is, at a power 
of 13–14 W). Then the suspensions 
were forced through polycarbonate 
filter membranes with a pore size of 
~100 nm. Using dynamic light scattering 
we determined that the liposomes were 
90±10 nm in size. The osmotic pressure 
across the membranes was balanced by 
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Figure 3 | Liposome diffusion in a nematic solution of F-actin filaments. a, Two-dimensional projection 
of a typical 100 s trajectory (50 ms between frames) of PEG-stabilized liposomes measured with 
an epifluorescence microscope focused deep into the sample. Colours denote the time lapse of the 
trajectory. The orientation of the trajectory (the director, denoted by the arrow) was determined from 
the first principal component of the frame-to-frame displacement vectors. b, A logarithmic plot of the 
MSD of the liposomes in the directions parallel (open circles and cyan line) and perpendicular (filled 
circles and orange line) to the filaments shows linear time dependence with slopes of 1, and thus Fickian 
diffusion ((Δx2(t)) = 2Dt with D||

ave = 1.1 μm2 s−1 and D⊥
ave = 0.45 μm2 s−1). Included is the free-diffusion 

limit — that is, the MSD of liposomes in water without actin (dashed line; D0 = 2.2 μm2 s−1) — and the 
hypothetical MSDs (grey symbols) inferred from the tails of the displacement probability distributions 
shown in c. The error bars show the standard deviations estimated by bootstrapping of the trajectories. 
Data are shown up to a time interval of 3 s because for longer times a significant fraction of liposomes 
have diffused out of the focus of the microscope. c, Measured displacement probability distributions for 
a 2 s time interval show that diffusion parallel to the filaments is Gaussian (albeit with different variance 
for the central and tail portions), whereas the exponential tails of the distribution in the perpendicular 
direction imply slower diffusion (D||

tail ≈ 1.4 μm2 s−1 and  D⊥
tail ≈ 0.15 μm2 s−1). Lines are best fits to the data 

points with equation (1).
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preparing the liposomes in the same buffer 
used for actin polymerization. To avoid 
unwanted complications from specific 
interactions between the liposomes and 
actin, we stabilized the zwitterionic DOPC 
(1,2-dioleoyl-sn-glycero-3-phosphocholine) 
membranes with the lipid–polyethylene 
glycol conjugate DOPE-PEG (1,2-dioleoyl-
sn-glycero-3-phosphoethanolamine-N-
[methoxy(polyethylene glycol)-750]) at 
the high molar concentration of 10%. 
To characterize unspecific adsorption, 
the unlabelled liposomes were incubated 
with fluorescently labelled bovine serum 
albumin overnight to determine whether 
the protein segregates to the liposome 
surface. Freshly prepared liposomes 
were mixed into reconstituted G-actin 
suspensions (5 mg ml−1) in fresh G-buffer 

(5 mM TRIS (tris(hydroxymethyl)
aminomethane) at pH 8.0, supplemented 
with 0.2 mM CaCl2, 1 mM ATP, and 
0.2 mM dithiothreitol and 0.01% NaN3). 
The polymerization of F-actin was initiated 
by adding salt (100 mM KCl, 2 mM 
MgCl2) followed by equilibration on 
the microscope stage overnight at room 
temperature. Under these conditions, the 
filaments have an average contour length of 
~21 μm (ref. 36). Using an epifluorescence 
microscope, we measured the vesicles’ 
time-dependent positions with 20-nm 
precision4, focusing deep into the sample 
(>100 μm; air objective, ×40 magnification, 
numerical aperture = 0.60) to avoid 
potential effects from the container’s walls. 
Trajectories were generated by a program 
written in house4.

Computation of the distribution of 
diffusivities. Using Lucy’s iterative 
algorithm59 — a technique widely used 
for deconvolution in signal processing — 
the distribution of diffusivities P(D) 
in equation (1) can be computed from 
inverting the displacement distribution 
Gs(x,t). For the (n+1)th iteration,

	 Pn+1(D) = Pn(D) g(x | D)dxGs(x,t)
Gs (x,t)∫ n � (2)

where Gn
s(x,t) = ∫D

0
0Pn(D) ∙ g(x | D)dD is the 

nth approximation of the displacement 
distribution and D0 is the coefficient 
corresponding to the free-diffusion limit. 
Equation (2) is bound by the constraints 
∫D

0
0P(D)dD = 1 and P(D) ≥ 0. The initial 

condition P1(D) = 1/Dave ∙ exp(−D/Dave), 
for which equation (1) can be solved 
analytically, helps the algorithm to 
converge faster to a solution.� ❐
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