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Abstract

As the size of a metallic system approaches the atomic scale, deviations
from the bulk are expected in a plethora of different physical properties due
to quantum size effects. In this work, two of these effects are investigated
in detail: the structural distortions that arise due to quantum confinement
of a metal’s itinerant electrons to an ultrathin film and variations in the
surface energy (relative stability) of such films as a function of thickness.
These effects are first examined from a theoretical viewpoint, where models
based upon a free-electron gas confined to a one-dimensional quantum well
are derived to illustrate the basic physical phenomena. These models are
engineered such that they are realistic enough to be used in the analysis of
empirical data with the adjustment of a small number of phenomenological
parameters.

These effects are then investigated experimentally using surface x-ray
diffraction at a third-generation synchrotron radiation facility (the Advanced
Photon Source at Argonne National Laboratory). Extended reflectivity
spectra from smooth atomic-scale Pb films prepared on Si(111) substrates
at 110 K are obtained for thicknesses of 6–19 atomic layers that exhibit
distinctive features indicative of quasibilayer lattice distortions. A detailed
analysis shows variations within the layer structure of each film that are cor-
related with Friedel-like charge density oscillations at the film boundaries.
Variations in the lattice distortions are also observed as a function of thick-
ness with a quasibilayer periodicity. This effect is explained in the context
of quantum size effects using the theoretical models.

A second experiment is also described in which initially smooth Pb films
are progressively annealed from 110 K to near room temperature. The film
morphology is examined every 5–10 K by scanning the extended x-ray re-
flectivity, which reveals the initially smooth films breaking up into islands
of specific heights. Once the samples reach a state of quasi-equilibrium,
the distributions of island heights are measured, which show strong quasi-
bilayer variations in the relative stability of different height islands (film
thicknesses). These variations are related to electronic contributions to the
surface energy using the free-electron-based theoretical models.
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1 Introduction

1.1 Quantum Size Effects

With the smallest feature size on current electronic devices already ap-
proaching the atomic scale, a fundamental understanding of the physical
consequences of shrinking such devices is becoming increasingly important.
When the thickness of a metal film or the size of a metallic nanostructure
becomes comparable to the quantum coherence length of its itinerant elec-
trons, effects due to confinement and quantization of the allowed electronic
states become significant. Since these effects are highly size-dependent, they
are generally termed quantum size effects (QSE). QSE have been observed
in a multitude of different physical properties of metal nanostructures, in-
cluding their transport characteristics, thermal stability, work function, su-
perconducting transition temperature, electron-phonon coupling, electronic
structure, surface charge density, growth behavior and morphology, chemi-
cal reactivity, and surface energy [1–45]. To further understand such effects
on a fundamental physical level, it is useful to start with a simplified system
in which only one of the three spatial dimensions has a length scale in the
quantum regime. Thin films and quasi-two-dimensional nanostructures fall
into this category and are the subject of this research. In particular, two ef-
fects will be focused upon: film lattice distortions due to QSE and variations
in the surface energy as a function of film thickness or island height.

Both of these physical effects are examined experimentally using surface
x-ray diffraction (SXRD) from a high-brilliance synchrotron source. In each
case, ultrathin lead (Pb) films or film nanostructures grown on silicon (Si)
substrates are the samples used as prototypes of the metal-on-semiconductor
system. Pb/Si films were chosen for this research for several reasons. Due
to decades of investment by the semiconductor industry, high-quality single-
crystal wafers of Si are readily available and low-cost. For the same reason,
systems based on Si surfaces are of great interest for technological appli-
cations. Furthermore, clean and smooth Si surfaces can be prepared very
easily and reproducibly simply by heating the substrates to high temper-
atures in vacuo. Pb is an attractive material for use as a film because it

1



1. INTRODUCTION

does not intermix with Si, so the Pb/Si interface is abrupt [46–49], and it
is very free-electron-like, with a Fermi surface that is close to spherical [50].
In addition, previous studies have shown Pb films to be strongly affected
by QSE, with interesting surface morphologies and growth behaviors having
been observed and correlated with electronic structure (see below).

The electronic structure of a thin metal-on-semiconductor film can be
viewed as a one-dimensional potential well in which the itinerant electrons
of the metal are confined on one side by the film-vacuum potential barrier
and on the other side by the band gap of the semiconductor. To aid in the
experimental investigations and further elucidate the physics of QSE, a series
of theoretical models based on a free-electron gas confined to such a quantum
well are derived in Chapter 4. As the models are developed with the specific
purpose of explaining empirical data, they are engineered to contain a small
number of adjustable parameters to account for the specific phenomenology
encountered in the experiments. The results from the models are then used
in least-squares fitting routines to help explain the SXRD data.

1.2 Step Height Oscillations in Ultrathin Metal

Films

One of the effects for which there is less experimental data available is the im-
pact quantum confinement has on the lattice structural distortion (strain)
of atomic-scale metal films relative to the bulk. Scanning tunneling mi-
croscopy (STM) and helium-atom scattering (HAS) experiments have all
reported lattice distortions related to QSE [17–20]; however, these tech-
niques probe primarily the electron density at the surface of the sample,
shedding little light on the internal film or buried interface structure. A
study using x rays, which scatter primarily off the electrons bound to the
atomic cores and have long penetration lengths, can thus provide valuable
complementary information to the existing body of work.

An example of results from a STM study [19] showing evidence of struc-
tural distortions in thin Pb/Si films is reproduced in Fig. 1.1. In this work,
films were grown at 200 K, a temperature at which steep-sided islands form
on the Si surface, between which is a single wetting layer. The samples
are prepared in a metastable state in which stepped terraces are present on
the island tops. The height profile of the island tops was then scanned to
measure the step heights between terraces differing in thickness by a single
atomic layer. As can be seen in the cross-sectional profile in Fig. 1.1(a), the
step heights are different depending on the absolute height of the terraces N ,

2



1. INTRODUCTION

Figure 1.1: (a) STM images (300 nm×300 nm) showing evidence of step height
variations as a function of thickness. The height profile is measured along the line
shown in Frame 1. Frames 2 and 3 are subsequent images of the same island. (b)
The deviation from the ideal island height as a function of the island height N ,
which shows bilayer oscillations. Reproduced from Ref. 19.

expressed in atomic layers (AL) and measured from the wetting layer (not
from the substrate). In this case, the step height between N = 5 and N = 6
is clearly larger than that between N = 6 and N = 7. The deviation of the
total island height from the ideal is shown in Fig. 1.1(b), which indicates
the presence of bilayer oscillations in the film thickness as a function of N .
Furthermore, the magnitude of these oscillations is surprisingly large, 0.4–
0.8 Å. These bilayer oscillations were correlated with the electronic structure
of the islands using scanning tunneling spectroscopy.

The STM study provides tantalizing evidence of some sort of structural
distortion due to QSE; however, since it used a scanning probe technique,
only the top surface of the islands could be probed, with no information on
the internal lattice structure or buried interface available. In Chapter 5, an
attempt to observe and understand this effect is undertaken using SXRD,
which probes all the atomic layers in the film on equal footing since the
penetration length of the x rays is much greater than the film thickness.
Since the structural distortions are specifically indicated to vary for different
island heights or film thicknesses, the morphology of the film must be as
uniform as possible for a SXRD study to be successful. Fortunately, it
was found that smooth, closed films could be grown if the substrates are
properly pretreated and the growth temperature is low enough (∼110 K).
By studying smooth films of near-atomic uniformity, the film morphology is
greatly simplified and a study of the vertical lattice distortions is possible.

The experimental analysis in Chapter 5 indeed indicates the presence of
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strong lattice distortions in the Pb films. However, the structural effects are
found to be much more complicated than those originally observed in the
STM study. Not only are oscillations in total film thickness observed with
a bilayer (quasibilayer, actually) periodicity, but lattice distortions are also
found within each film that are linked to QSE. This connection is explicitly
made via the theoretical models developed in Chapter 4. The internal lattice
distortions in the films also have a quasibilayer periodicity and are primarily
near the film surface and the buried film-substrate interface. These distor-
tions dampen away from the film boundaries in a manner very similar to the
Friedel oscillations in the electronic charge density present at the surface of
a bulk-truncated metal [51]. The variations in total film thickness observed
are similar to those shown in Fig. 1.1(b) but are shown to be primarily a
secondary result of more complicated structural distortions present in the
layer structure of the film.

1.3 The Preferred or “Magic” Thickness Effect

The other frames in Fig. 1.1(a) show subsequent images of the same Pb
island taken after a short period of time, which show that the N = 6 portions
of the island tend to disappear in favor of N = 5 or N = 7 thicknesses.
This behavior would seem to indicate that the N = 6 height is less stable
than the other two terrace heights. This fact is confirmed by other x-ray
diffraction, STM, and low-energy electron diffraction (LEED) studies [21–
26], which have found that the morphology of Pb films grown on Si substrates
at temperatures of 150–200 K consists of flat-topped, steep-sided islands of
preferred heights. An example of this morphology is shown in Fig. 1.2(a),
with a height histogram of the image shown in Fig. 1.2(b). Under the
proper conditions, surfaces with islands mostly of a single uniform height
can be prepared [22–28]. For this reason, such island heights are often called
“magic” heights (thicknesses). The origin of this effect has been attributed
to QSE, where electronic contributions to the surface energy of the films
or islands result in local minima for certain thicknesses that cause those
thicknesses to be more stable than others. In some cases, this effect can be
quite dramatic, enabling the growth of unusually stable atomically-uniform
films with the magic thickness [28,44,45].

More generally, electronic contributions cause oscillations in the surface
energy as a function of thickness. This effect is examined theoretically in
Chapter 4 in the context of a free-electron gas confined to a quantum well.
In the case of Pb films, the oscillations due to QSE have a quasibilayer peri-
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Figure 1.2: (a) A 200 nm×200 nm STM image of islands grown at 200 K showing
the flat-topped, steep-sided morphology. (b) A histogram showing that the islands
are overwhelmingly of heights 4 AL and 6 AL above a reference height of 2 AL.
Reproduced from Ref. 25.

odicity which result in films with either even or odd numbers of atomic layers
being preferred, with a cross-over between the two happening periodically
following a regular superperiodic beating pattern. These quasibilayer oscil-
lations have also been seen in first-principles calculations [26, 29, 41]. The
results of some of these calculations are reproduced in Fig. 1.3. From this
figure, the origin of the preferred thickness effect can be seen. The surface
energy has a global minimum at N = 1, which corresponds to a wetting
layer. A second deep local minimum can be seen at N = 6. For thicknesses
between these two, the system can lower its overall energy by phase sepa-
rating into surface regions with thicknesses of 1 and 6 AL, thereby resulting
in the flat-topped islands observed in the microscopy studies. Note that the
N values shown in Fig. 1.3 differ by 1 AL from those in Fig. 1.1 and by
2 AL from those in Fig. 1.2 since the latter two studies did not include the
wetting layer in their thickness calculations. In the last case, there is also a
diffuse lattice gas layer on top of the wetting layer that is also not included.

Thus, evidence of electronic effects for specific film thicknesses has been
reported, but comprehensive empirical information on the surface energy
over a broad range of thicknesses is lacking. The technique of x-ray diffrac-
tion is well-suited to provide such measurements since it both measures
absolute film thicknesses and provides a statistical sampling over a macro-
scopic area. By preparing a sample that is near thermal equilibrium, a
broad range of thicknesses can be present on the sample that reflects the
local energy landscape of the system. The distribution of thicknesses can
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Figure 1.3: Results of first-principles calculations of a supported Pb/Si
film showing quasibilayer oscillations in the surface energy. The local min-
imum at N = 6 results in a phase separation of films with thicknesses
between 1 and 6 AL (≡ML) into uniform-height islands surrounded by a
wetting layer. Reproduced from Ref. 26.

be measured using x-ray diffraction to obtain the relative film stability as a
function of thickness, which is related to the surface energy. Such a study is
presented in Chapter 6, where quantitative information on the surface en-
ergy of Pb/Si films is obtained over a broad range of thicknesses. The results
are consistent with those from the theoretical model for the surface energy
developed in Chapter 4 and with the first-principles calculations shown in
Fig. 1.3. This study represents the first empirical measurements of QSE in
the surface energy over a comprehensive range of thicknesses.
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2 Surface X-Ray Diffraction

2.1 Introduction

This chapter is meant as a brief introduction to the technique of SXRD and
the background needed to understand it. This technique can be used for
many different purposes to obtain a wealth of information about the prop-
erties of a sample’s surface, as described elsewhere in many different books
and reviews [52–57]. However, since only a very narrow scope of these par-
ticular applications is relevant to the present work, only the background
and theory needed to understand the subsequent chapters will be discussed
in detail. In particular, only elastic scattering in the kinematic regime (no
multiple scattering) will be considered. Due to the weak interaction of x rays
with conventional condensed matter, this simplification is justified. That be-
ing said, there are a number of techniques that specifically capitalize on the
information one can obtain from non-kinematic effects. However, since the
experimental conditions in this study were specifically chosen to minimize
such effects, they will not be discussed in detail.

In addition, although a wealth of three-dimensional information can be
obtained from the examination of all the various crystal truncation rods, in
this study only measurements of the specularly reflected intensity (specular
rod) will be presented, which contains no contributions due to the in-plane
order of the sample’s atomic layers. In this manner, the out-of-plane order
can be studied without the details of the lateral structure of the films in-
fluencing the data, effectively reducing the problem to one-dimension along
the surface normal.

The chapter begins with an introduction to the concept of crystal lat-
tices and the nomenclature used to describe them. Particular attention will
be paid to the face-centered cubic (fcc) and diamond lattice structures since
they are most relevant to the present work. Since we will be primarily in-
terested in surfaces and quasi-2D films adsorbed to surfaces, a coordinate
system based upon the symmetry and structure of a crystal surface will
be introduced and its relationship to the bulk coordinate system explained.
The basic phenomenon of diffraction will then be discussed, both from the
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scalar Bragg viewpoint as well as the vectorial von Laue formulation. An im-
portant concept in the description of diffraction phenomena is the reciprocal
lattice, which will be described and related to the real-space (direct) lattice
of the crystal. After a brief discussion of the effects that surface reconstruc-
tions and lattice superperiodicities have on observed diffraction patterns, the
formulas used to quantitatively describe the diffracted intensity from a crys-
talline sample are derived, along with a number of experimental correction
factors that need to be taken into account. Finally, the specific equations
for the extended reflectivity from Pb/Si(111) films are derived that will be
used in the rest of the work to fit experimental data.

2.2 Crystal Lattices

2.2.1 The Unit Cell

A crystal by definition is a three-dimensional repetition of some identical
configuration of atoms or molecules, called the unit cell. A crystal is con-
structed from its constituent unit cells like a 3D block composed of identi-
cal bricks, where each brick has the same relative distribution of atoms or
molecules within itself. In the case of a crystal, the bricks can have any
shape, as long as they are identical and fill up the entire crystal volume
without any intervening spaces when stacked together. The regular manner
in which the unit cells are repeated to make up the crystal can be described
by three non-coplanar vectors called the crystal axes, which are convention-
ally denoted by the vectors a1, a2, and a3. If the unit cell is taken to have
the form of a parallelepiped (which it can always be chosen to be), then
these vectors describe the orientation and lengths of the three distinct edges
of the unit cell.

There is no unique unit cell for any given crystal lattice or choice of
crystal axes. However, there are two special types of unit cells that bear
special attention. The first is called the primitive unit cell, which is a unit
cell that contains the fewest number of atoms possible while still by itself
describing the crystal structure. However, the primitive unit cell is not
always the most convenient to work with and sometimes by using a larger
unit cell (and hence not primitive), it can be chosen to be a nice symmetric
shape (e.g., a cube). This second type of unit cell is called the conventional
unit cell. Note that to conserve the volume of the crystal, the physical
volume of the conventional unit cell must be equal to an integer times the
volume of the primitive unit cell. The conventional unit cell will also have a
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2. SURFACE X-RAY DIFFRACTION

Figure 2.1: (a) The structure of the fcc conventional unit cell. (b) A primitive
unit cell is shown as a shaded parallelepiped, which has a one-atom basis. (c) The
diamond lattice, which is the same as a fcc lattice with a two-atom basis. The
vector showing the relative position of the second atom in this basis is shown. (d)
Some of the (111) planes of the fcc lattice. Adapted from Ref. 58.

correspondingly greater number of atoms contained within it. In general, if
a unit cell contains more than one atom or molecule in it, the configuration
of the individual constituents (i.e., their relative positions) throughout the
unit cell is called a basis. The distinctions between these terms will become
clearer with the examples outlined below.

In this work, we will be primarily concerned only with Si, which has a
diamond lattice structure, and Pb, whose lattice structure is face-centered-
cubic (fcc). Since the diamond structure is a special case of the fcc lattice,
we will for now concentrate on the latter. The atomic arrangement of a fcc
lattice is shown in Fig. 2.1(a). The conventional unit cell for this lattice
consists of a cube with atoms positioned at each of the corners and in the
middle of each face of the cube. The fcc conventional unit cell is not a prim-
itive unit cell. A primitive unit cell for the fcc lattice is shown in Fig. 2.1(b)
as a shaded region. It can be seen that this unit cell is primitive by displac-
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ing the parallelepiped slightly along one of its diagonals and noticing that
it then encompasses only one atom. In contrast, if one displaces the con-
ventional unit cell (the cube) along one of its diagonals, it becomes evident
that it contains four atoms — one corner atom and three of the face-centered
atoms. As such, it can be inferred that the volume of the conventional unit
cell is four times that of the primitive unit cell. The lattice constant of a fcc
material denotes the length of one edge of the cube of the conventional unit
cell. In the case of Pb, this constant is aPb = 4.92 Å at 110 K.

The diamond lattice is a variant of the fcc lattice where the primitive
unit cell has a two-atom basis. That is, the local surroundings of the two
atoms in the basis are different and thus must both be included in the prim-
itive unit cell. The structure of the diamond conventional unit cell is shown
in Fig. 2.1(c). The additional atoms are shown as white circles to distinguish
them from the normal fcc positions. In addition, the vector pointing to the
second atom in the basis is shown. That is, the basis can be described as
having one atom at the origin and the other located at the vector position
R = 1

4(a1 + a2 + a3) (where a1 = ax̂, a2 = aŷ, and a3 = aẑ are the crystal
axes for the conventional unit cell). Under careful inspection, one will notice
that all of the white circles in the diagram lie at this vector position with
relation to one of the fcc positions, and that every fcc atom has a correspond-
ing white atom companion (not all are visible in the figure). The diamond
lattice can thus be considered to be two interpenetrating fcc lattices, with
one displaced by R with respect to the other. As with the fcc lattice, the
lattice parameter quoted for a material with a diamond lattice structure
corresponds to the length of one edge of the cube of the conventional unit
cell (aSi = 5.43 Å at 110 K).

2.2.2 Miller Indices and Crystal Planes

Vectors composed of combinations of the crystal axes can be used to de-
note different directions and atomic planes with respect to the crystal struc-
ture. The coefficients of the three crystal axes are called the Miller indices.
Specifically, a direction is notated with square brackets and the three Miller
indices. By convention, these indices are usually chosen to be integers and
negative numbers are notated with a bar (1 = −1). For example, [100] is
equivalent to a1, whereas [210] denotes the direction 2a1 − a2. Similarly, a
crystallographic plane of the crystal is denoted with the vector normal to
the plane. In this case, the Miller indices are placed in round braces — e.g.,
(110) denotes the plane whose normal lies along the [110] direction. Thus,
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Figure 2.2: The (111) planes of the fcc lattice form a close-packed stacking
sequence with three distinct in-plane arrangements relative to one another
that stack ABCABCABC . . .. The conventional unit cell is also shown.
Adapted from Ref. 59.

when one refers to the (111) surface of a crystal, they are speaking of a
crystal facet whose exposed surface is the (111) crystallographic plane. By
its nature, a crystal possesses certain rotational and inversion symmetries.
As such, certain directions and crystallographic planes will be symmetrically
equivalent to one another. For example, in the case of a cubic system, the
[100], [010], and [001] directions are all equivalent since they are all related
by a symmetry operation (rotation by 90◦ in this case) allowed by the crystal
structure.

In our case, the substrates used were single-crystal Si(111) wafers, mean-
ing the top polished surface of the wafer is nominally the (111) crystallo-
graphic plane. When Pb is thermally evaporated on these substrates (see
Sec. 3.5.1), the films form with a (111)-oriented crystalline structure. The
(111) planes of a fcc material are shown in Fig. 2.1(d) with respect the con-
ventional unit cell. Since Pb is a fcc material, each atomic layer of Pb on the
Si substrate has the structure of one of these Pb(111) planes. However, as
is evident in Fig. 2.1(d), three of these planes occur in every unit cell (there
will be an additional one at either the top-right or bottom-left corner, which
must be included). If these three planes are stacked one on top of the other,
it can be seen that they have different arrangements of atoms relative to
one another, as shown in Fig. 2.2. Specifically, each individual plane forms
a triangular net of atoms. However, when the planes are stacked, they are
not placed one on top of the other, but are offset slightly so that the atoms
stack closely together. For this reason, the fcc lattice is often called cu-
bic close-packed, since it represents the densest manner in which spheres
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Figure 2.3: The (111) planes of the diamond lattice form three sets of
bilayers per unit cell with the interlayer spacings shown. The unit cell in
the surface (hexagonal) coordinate system is shown with a solid red box.
By displacing the box slightly (dashed box) it is clear that this choice of
unit cell contains six atoms, compared to eight in the conventional unit cell.

can be packed together into a 3D structure.∗ Every third stacking plane
has an identical orientation and relative lateral displacement, resulting in
an ABCABCABC. . . stacking order. There exist alternative close-packed
structures that have a similar hexagonal (or triangular) nets of atoms in
each plane but that have a different stacking order. For example, the hexag-
onal close-packed (hcp) lattice has the stacking order ABABAB. . . . Such
structures represent independent crystal lattices, though, which are distinct
from the fcc lattice of Pb.

Since the fcc unit cell has a length of a
√

3 along the [111] direction, the
interlayer spacing between the atomic layers of a fcc material in this direction
is a

√
3

3 . In contrast, the diamond lattice consists of two interpenetrating fcc
lattices, with one displaced from the other by the vector 1

4(a1 + a2 + a3),
which is equivalent to 1

4 of the unit cell length in the [111] direction. Thus,
the atomic layer structure of (111) planes in a diamond structure is the same
as the fcc(111) structure with an additional atom directly above each of the
fcc(111) planes a distance of a

√
3

4 , which places it a distance of a
√

3
12 below

the next fcc(111) plane above it. The layer structure thus consists of three
sets of bilayers, each consisting of two layers separated by a

√
3

12 and with
the interbilayer distance being a

√
3

3 . A cross-section of this layer structure
is shown in Fig. 2.3. Due to the bilayer structure of the atomic planes in
the [111] direction, there are two possibilities for truncation of the surface:

∗Next time you buy oranges at the grocery store, notice how they are stacked (if they
are stacked at all). Although they likely are not aware of it, an attentive grocer will stack
spherical produce in fcc(111) planes since it is the most efficient method of packing the
product on the shelf and forms a nice pyramidal structure.
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cross-section

Figure 2.4: The fcc(111) surface consists of a hexagonal net of atoms. The
crystal axes and unit cell for the surface coordinate system are shown. The
third crystal axis is pointed out of the paper and is parallel to the surface
normal.

either between the bilayers or in the middle of a bilayer. In the case of Si,
it has been experimentally verified that the Si(111) surface is terminated
between the bilayers, as shown in Fig. 2.3 [60].

2.2.3 Surface Coordinates

When working with the surface of a crystal, it is not always convenient to
work in the framework of the conventional unit cell, particularly if none of
the crystal axes coincides with the surface normal. In that case a different
set of crystal axes is generally chosen such that a′3 is nominally normal to the
surface and a′1 and a′2 lie in the plane of the surface. Since this coordinate
system is different from the conventional one, it is necessary to be able to
translate any results specified with the surface coordinates to the conven-
tional coordinates, which can be accomplished with a standard coordinate
transformation. For our purposes, though, since only reflectivity measure-
ments will be discussed, the full transformation matrix is not needed. For
the interested reader, its derivation is covered in other works [56,61].

In the case of a material with a fcc (or diamond) lattice, the (111) planes
in the unit cell form a hexagonal (triangular) net, as can be seen in Fig. 2.2.
This 2D net has been reproduced in Fig. 2.4 along with a cross-section of
the conventional unit cell shown in blue. This cross-section is equivalent to
those shown in Fig. 2.1(d). The surface normal is in the [111] direction, so
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the third crystal axis in the surface coordinate system is

a′3 = a1 + a2 + a3. (2.1)

The standard choice for the in-plane crystal axes is shown with red arrows
in Fig. 2.4 along with the surface unit cell defined thereby. By noting that
the distance between neighboring atoms in the (111) surface corresponds to
half of the diagonal of one of the cubic faces of the conventional unit cell
[see Fig. 2.1(d)], it should be clear that both of the lengths of each of these
surface crystal axes is

√
2

2 a. Specifically, these vectors are [61]

a′1 =
1
2
(a1 − a2)

a′2 =
1
2
(a2 − a3).

(2.2)

Thus, the area of the surface unit cell is Acell =
√

3
4 a2. From Eq. (2.1),

the length of the third crystal axis is
√

3a. Thus, the volume of the unit
cell in the surface coordinate system is 3

4 of the volume of the conventional
unit cell. In the case of a fcc lattice, this means that the surface unit cell
volume encompasses three atoms (compared to the four encompassed by the
conventional unit cell volume, as discussed in Sec. 2.2.1). In the case of a
diamond lattice, this means the surface unit cell volume encompasses six
atoms, as is evident in Fig. 2.3.

2.3 Diffraction and the Reciprocal Lattice

2.3.1 Bragg Reflections

The phenomenon of x-ray diffraction arises from the coherent interaction
of electromagnetic waves scattered from a periodic collection of molecules
or atoms in a crystal lattice. X rays are used because their wavelength is
on the order of the interatomic spacing between the atomic constituents
of a solid. Of all the scattered waves, only those scattered elastically will
interfere coherently. Inelastically scattered waves generally all have different
wavelengths and thus contribute to a diffuse incoherent background. The
elastically scattered waves all have the wavelength of the incident radiation,
but have different phases based upon the differences in path lengths between
the scattering elements in the crystal. Diffraction arises when the scattered
waves from all (or a macroscopic fraction, anyway) of the atoms in the
crystal have the same phase. There are two historical perspectives to this
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Figure 2.5: In the Bragg formalism, x rays reflect specularly from crystal-
lographic planes in the crystal. When x rays reflected from different parallel
planes add constructively, one sees a Bragg reflection. The angle θ at which
such a reflection occurs is called the Bragg angle. Such a reflection can also
be described with the momentum transfer vector q in the Laue formalism,
in which case the condition for observing a Bragg reflection is when the
momentum transfer vector points to a reciprocal lattice point.

phenomenon of diffraction. Both are equally valid and in fact equivalent,
but approach it from a slightly different viewpoint.

The viewpoint of Bragg diffraction is based on three assumptions:

Assumption #1. A crystal can be decomposed into parallel lattice planes
with regular interplanar spacings, denoted by d.

Assumption #2. X rays are specularly reflected from these crystallograph-
ic planes like light from a mirror.

Assumption #3. At specific angles of reflection, the reflected x rays in-
terfere constructively and produce a diffracted beam. These angles with
respect to the crystal planes are called Bragg angles.

This formulation is illustrated in Fig. 2.5, where three successive planes of
atoms in a crystal are shown that have an interplanar spacing of d. The
incident plane-wave x-rays make an angle θ with the planes of the crystal
and are reflected specularly. The path length difference between the x rays
reflected from the top atomic plane and the one below it is 2d sin θ. For these
waves to interfere constructively, this path length difference must be equal
to an integer number of x-ray wavelengths. Thus, in the Bragg formulation,
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the condition for diffraction is

2d sin θ = nλ, (2.3)

where n is an integer and the angles θ satisfying this relation are called
Bragg angles. This equation is called Bragg’s Law.

The atomic planes shown in Fig. 2.5 are not necessarily those at the
surface of a crystal. Since x rays interact weakly with matter and thus have a
long penetration length, the planes shown in the schematic are surrogates for
any possible crystallographic planes in the crystal. This implies that a Bragg
reflection can be found for every conceivable combination of three coplanar
points in the crystal lattice. These crystallographic planes can be described
in terms of the crystal axes defined in Sec. 2.2. Specifically, each plane can
be assigned a set of integer Miller indices HKL. By the crystallographic
planes HKL, we mean a set of atomic planes, one of which passes through
the origin and whose nearest neighboring plane passes through the three
points at 1

H a1, 1
K a2, and 1

La3 [56]. The interlayer spacing is then related to
these vectors as

d =
a1

H
· n̂ =

a2

K
· n̂ =

a3

L
· n̂ (2.4)

where n̂ is the unit vector normal to the HKL planes.

2.3.2 The von Laue Formalism

The von Laue formulation of x-ray diffraction concentrates more on the
momentum transfer vector,

q ≡ kf − ki, (2.5)

where the wave vectors ki and kf indicate the directions of the incoming
and diffracted x rays and whose magnitudes are k = 2π/λ. The momentum
transfer vector is shown in Fig. 2.5 with a red arrow. Since |ki| = |kf | = k

for elastically scattered x rays, the magnitude of this vector is q = 2k sin θ.
Thus, Bragg’s Law can be rewritten as

q =
2πn

d
. (2.6)

In addition, due to Assumption #2 on page 15, q is also normal to the
crystallographic planes responsible for the diffracted beam in the Bragg for-
malism. Thus, every set of atomic planes in the crystal can be characterized
by a vector whose direction is normal to the planes and whose magnitude
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is proportional to the reciprocal of their interplanar spacing in the crystal.
Specifically, the unit normal vector in Eqs. (2.4) can be taken to be n̂ = q/q.
Together with Eqs. (2.6) and (2.4), this yields the Laue conditions

q · a1 = 2πH (2.7a)

q · a2 = 2πK (2.7b)

q · a3 = 2πL (2.7c)

where by convention the integer n is absorbed into H, K, and L.
Thus, every Bragg reflection has a corresponding q vector. Since the

dimensions of q are inverse-length, the mathematical space in which this
vector resides is called reciprocal space. The structure of reciprocal space is
complementary to that of the real space of the crystal. Specifically, if the
basis vectors of reciprocal space are chosen such that they are orthogonal to
two of the three crystal axes,

ai · bj = 2πδij , (2.8)

then the momentum transfer vector for the Bragg reflection corresponding
to the crystallographic planes HKL can be conveniently written as

q = Hb1 + Kb2 + Lb3, (2.9)

which by inspection can be seen to obey the Laue conditions, Eqs. (2.7).
The only basis vectors that obey the orthogonality relation, Eq. (2.8),

are

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(2.10a)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
(2.10b)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
, (2.10c)

which can be seen from the following example. To construct the basis vector
b1, one first notes that to be orthogonal to both a2 and a3, it must be parallel
to a2 × a3. The magnitude of this cross product is the area of the unit cell
facet spanned by the vectors a2 and a3. By Eq. (2.8), the magnitude of
b1 must be inversely proportional to the length of a1 projected onto the
vector a2 × a3, which is just the “height” of the parallelepiped defined by
the three crystal axes. Thus, the proper quantity with which to normalize
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Unit Cell Type Selection Rule (Allowed Reflections)
Primitive (Simple) Any H, K,L

Body Centered H + K + L = 2n

Face Centered
H, K, L all odd or
H, K, L all even

Diamond
(fcc + 2-atom basis)

H, K, L all odd or
H, K, L all even and H + K + L = 4n

Hexagonal Close-Packed
L even or
H + 2K 6= 3n

Table 2.1: Selection rules for common types of crystal lattices. In all cases, n
is any integer and H, K, L refer to the bulk-indexed Miller indices of a Bragg
reflection.

b1 is a1 · (a2 × a3), the volume of the unit cell. This yields the definition of
b1 given by Eq. (2.10a). A similar procedure can be followed for b2 and b3.

The Laue conditions thus describe a 3D lattice of points in reciprocal
space, each of which corresponds to a q vector for a Bragg reflection. These
points are called Bragg points and the lattice formed by these points in recip-
rocal space is called the reciprocal lattice. In the case where the crystal axes
describe a unit cell with a one-atom basis (such as the simple cubic lattice,
for instance), every possible combination of integers HKL corresponds to
a Bragg peak. However, if the conventional unit cell has multiple identical
atoms in its basis then some HKL combinations may not refer to allowed
Bragg peaks and are thus termed “forbidden.” This idea can be understood
qualitatively as follows.† Consider for example the fcc conventional unit
cell [Fig. 2.1(a)], which has a four-atom basis. Since the reciprocal lattice
has the inverse properties of the direct (crystal) lattice, the packing of more
atoms into the real-space unit cell (i.e., denser lattice points) means that the
reciprocal space unit cell must have fewer points in it. That is, not every
unit cell in reciprocal space, as defined by the basis vectors bj , will have a
valid Bragg point in it. The rules by which one determines which points in
the reciprocal lattice correspond to “allowed” Bragg reflections and which
are forbidden are called selection rules. The selection rules for some basic
unit cell types are shown in Table 2.1. For instance, the simple cubic lattice
has no forbidden reflections; whereas for the fcc lattice, whose conventional
unit cell is a cube with a basis, only reflections where all the Miller indices
are either even or odd integers are allowed.

†The selection rules for determining which peaks are allowed or forbidden can also be
determined analytically by constructing the structure factor for the unit cell (Sec. 2.5).
See for example, pp. 125–129 in Ref. 55.
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The selection rules are the result of an additional symmetry in the crystal
lattice that is not represented in the conventional unit cell. If this additional
symmetry is broken in some way — e.g., if some of the atoms in the basis
are not identical, or they are displaced from their ideal positions — then the
selection rules will not necessarily apply. That is, the fcc conventional unit
cell has four atoms in it. If these atoms are all identical, then the selection
rule (H, K, and L must be all odd or all even) applies. However, if one or
more of these atoms is different in some way, then the selection rule may
be broken. Similarly, if a material has a unit cell that has additional atoms
in its basis, then additional selection rules may apply. For instance, for a
diamond lattice, which is a special version of the fcc lattice with twice as
many atoms per unit cell (the primitive unit cell has a two-atom basis), all
the selection rules of fcc apply, plus the additional one that even if H, K,
and L are all even, unless they add up to 4n the peak is forbidden.

2.4 Reconstructions and Superperiodicities

In the last section, the inverse nature of the reciprocal lattice was discussed
in the context of selection rules. There it was found that if the conventional
unit cell in real space is larger than the primitive unit cell, then there must
be correspondingly fewer allowed reflections in reciprocal space. That is, a
higher density of lattice points in real space translates to a lower density
of lattice points in reciprocal space. This discussion all took place within
the context of bulk crystal lattices. The structure of a crystal surface can
deviate significantly from the structure of the bulk, though, and truncation
of the crystal structure often results in dangling bonds that cause a rear-
rangement of the surface atoms into a superstructural configuration. Such
a phenomenon is known as surface reconstruction.

As an example of this effect, consider a crystal surface whose bulk trun-
cation would result in a square lattice of atoms. The direct (real-space)
and reciprocal lattice along with the respective basis vectors in the surface
coordinate system are shown in the top portion of Fig. 2.6. Depending on
the details of the atomic structure of the crystal near the surface, the sys-
tem may be able to reduce its surface energy slightly by shifting every other
row of atoms a minute amount in alternating directions, as shown in the
bottom portion of the figure. The surface in this case has formed a 2 × 1
reconstruction since the surface unit cell has effectively doubled its size in
the a′1 direction.

In Sec. 2.3 it was found that the magnitude of b1 is proportional to
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Figure 2.6: Illustration of a surface reconstruction. In this case, simple
truncation of the crystal would result in a square lattice of atoms. The
reciprocal lattice also thus consists of a square lattice of points. However,
the lowest-energy configuration of the surface atoms may be such that they
form a superstructure, in this case a 2 × 1 reconstruction. This effectively
changes the size of the surface unit cell, resulting in corresponding super-
structure peaks in reciprocal space.

1/|a1|; thus, an expansion of the effective real space unit cell by a factor of
two must be accompanied by a shrinkage of the reciprocal space unit cell
by a factor of two. This will result in superstructure peaks being found at
fractional-order positions in reciprocal space (they are fractionally-ordered
with respect to the original basis vectors, which are still used for indexing
purposes). This effect is illustrated in the bottom portion of Fig. 2.6. In
practice, since the shifts in atomic positions that cause the reconstruction
are usually only very slight, the superstructure peaks are in general much
weaker in intensity than the other peaks.

Although in this example it was assumed that the atoms that form the
reconstruction are the surface atoms of a bulk-truncated crystal, such surface
reconstructions can also be induced by one or more layers of adsorbate being
deposited onto the crystal surface. The effects on the diffraction patterns
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observed are similar to those described above with the additional complica-
tion that the superstructure formed by the adsorbate atoms may be either
commensurate or incommensurate with the atomic lattice of the crystal sur-
face. In the former case, the diffraction features of the adsorbate layer(s)
will combine with those due to the underlying crystal lattice and interference
between the scattered waves from the two may occur. In the latter case, the
adsorbed atoms may form their own independent lattice and/or superstruc-
ture that usually have some orientational relationship to the lattice of the
underlying crystal surface, even if they do not share the same periodicity.
The diffracted waves from the adsorbate atoms will in general not interfere
with those from the underlying substrate in this case, with a notable excep-
tion being the case of the reflectivity, which always contains contributions
from all the surface layers, regardless of their in-plane orientations. The
reflectivity will be discussed in Secs. 2.5 and 2.6.

The superstructure that is formed by a surface reconstruction, like the
one described above, extends in two dimensions in the plane of the crystal
surface. As will be seen in Chapter 5, it is also possible for the structure of a
crystal surface or film to have a superperiodic structure along the direction
normal to the surface of the sample. For instance, bilayer oscillations in
the interlayer spacings of the atomic layers of a film will have much the
same effect as the 2× 1 reconstruction shown in Fig. 2.6, except that since
the superperiodicity lies in the direction of a′3, the superstructure peaks will
show up in the b′3 direction in reciprocal space instead of in the b′1 direction.
Conceptually, though, the two effects are analogous — a superperiodicity
in the real space lattice results in fractional-order diffraction features in
reciprocal space.

2.5 Calculation of the Scattered Intensity

2.5.1 The Structure Factor

Since x rays are wavelike in nature, the scattered intensity from a collection
of particles is calculated by first summing the amplitudes of the waves from
each individual particle. Once the total amplitude is known, its square mod-
ulus is proportional to the measured intensity. The first step in calculating
the scattered amplitude is to consider a single charged particle. The expres-
sion for the cross-section of a charged particle for scattering electromagnetic
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radiation is given by the Thomson formula [62]

dσ

dΩ
= P

(
e2

4πε0mc2

)2

, (2.11)

where P is a polarization factor and m is the mass of the scatterer. Since
the mass of an electron is more than three orders of magnitude smaller than
the mass of a proton, less than 1/106 of the measured signal will be due to
scattering from the protons in the nucleus; thus, it will be subsequently as-
sumed that the measured intensity is solely due to scattering from electrons.
In that case, this formula can be rewritten as

dσ

dΩ
= Pr2

0 (2.12)

where r0 = e2

4πε0mec2
= 1.617 × 10−5 Å is called the Thomson scattering

length. The Thomson formula is classical in nature, which in principle is
subject to corrections due to the quantum mechanical nature of the photon
and scatterer. In particular, when the momenta of the incident and scattered
photons are different, contributions due to inelastic scattering will occur.
Such scattering can either be due to recoil of the electron, in which case it is
termed Compton scattering, or in the case of an electron bound to an atomic
nucleus, due to the electron making a transition to an excited state of the
atom. Compton scattering is diffuse in nature and for our purposes can be
considered part of the background that is subtracted from the data. In the
case of atomic transitions, as long as the incident x-ray energy is far from
any absorption edges of the material,‡ the corrections due to such effects are
negligible. Therefore, for our purposes, the Thomson formula is an accurate
reflection of the electromagnetic cross-section of an electron.

The amplitude of a photon scattered from an electron at position r with
respect to the origin is then

A1 = A0r0
1

R0
eiq·r, (2.13)

where A0 is the amplitude of the incoming plane wave and the factor of
1/R0 arises from the spherical nature of the scattered wave. The polariza-
tion factor has been left out for the time being and will be reintroduced in
Sec. 2.5.4. The phase factor of eiq·r is due to the electron not being located
at the origin. That is, relative to a wave scattered from the origin, the pho-

‡In the field of x-ray diffraction, the energies at which atomic transitions occur are
commonly referred to as absorption edges due to the enormous jump in the absorption
cross-section of the atom at these energies.
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2θ

r

ki · r −kf · r

Figure 2.7: The geometry for scattering from a single electron. The scat-
tered wave picks up a phase of (ki − kf ) · r relative to a wave scattered
from the origin. The scattering angle 2θ is defined as the angle between the
vectors ki and kf .

ton picks up a phase shift of ki · r along its incoming path and a phase shift
of −kf · r along its outgoing path, as shown in Fig. 2.7; hence, the total
phase factor is e−i(ki−kf )·r = eiq·r. This factor is arbitrary at the moment,
since the origin is arbitrary; however, it will be of crucial importance when
more than one electron is involved and the scattered waves from each parti-
cle interfere with one another. Note that since only elastic scattering will be
considered, |kf | = |ki| = k and the magnitude of the momentum transfer is

q = 2k sin
(

2θ

2

)
, (2.14)

where 2θ is the scattering angle, defined as the angle between ki and kf .
As its notation suggests, the scattering angle is related to the Bragg angle
introduced in Sec. 2.3; however, the scattering angle is a more generalized
quantity that need not be related to a Bragg reflection per se. Indeed, we
have yet to build a crystal lattice, without which diffraction cannot arise.

The amplitude from a collection of electrons located at positions rj is
just the sum of those from each individual scatterer, taking into account
their different phases,

A = A0r0
1

R0

∑

j

eiq·rj , (2.15)

where it has been assumed that the distance to the detector is much larger
than the size of the sample volume illuminated by the incident beam; that
is, R0 À |rj |. The scattering from an atom is not simply the scattering from
a collection of free electrons, though, so Eq. (2.15) must be generalized to
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an integral

Aatom = A0r0
1

R0

∫
ρ(r)eiq·rd3r, (2.16)

where the electron density, ρ(r), is described by the quantum mechanical
wave functions of the electrons surrounding the nucleus. In such an integral
it is customary to consider the vector origin to be the center of the atom.
The integral in Eq. (2.16) is called the atomic scattering factor

f(q) =
∫

ρ(r)eiq·rd3r, (2.17)

which is the Fourier transform of the electron density of the atom. For very
small momentum transfers, the exponential factor approaches unity and
f(q) → Z, the number of electrons in the atom. In its most general treat-
ment, f(q) is a complex quantity dependent on the incident x-ray energy. If
the x-ray energy is close to an atomic absorption edge, the Thomson formula
no longer adequately describes the cross-section of the electrons in the atom
and corrections are necessary. However, since the x-ray energies used in this
study were specifically chosen to avoid any such absorption edges, no such
corrections were made to the atomic scattering factors used. The value of
the atomic scattering factor as a function of the momentum transfer is tabu-
lated for virtually all of the elements of the periodic table [63]. In this work,
the values used for the atomic scattering factor were obtained via a cubic
spline interpolation of the tabulated values for the neutral atoms. Since the
atomic scattering factor varies monotonically and only very slowly, such a
scheme yields accurate results. An example of the atomic scattering factor
is shown in Fig. 2.8 for Si, which shows the tabulated values as well as the
interpolation curve used.

The atomic scattering factor is written in Eq. (2.17) as a function of
the magnitude of q since it is almost always spherically symmetric, owing
to the approximate spherical symmetry of the core electron density around
most atoms. However, deviations from complete spherical symmetry can
have important effects. Most notably, such asymmetries are responsible for
violations of the selection rules for carbon (diamond), silicon, and germa-
nium [64]. These materials all form a diamond lattice whose primitive unit
cell is that of a fcc lattice with a two-atom basis. As discussed in Sec. 2.3,
if the atoms in this basis are identical, an additional selection rule applies
due to an additional symmetry in the crystal, as shown in Table 2.1. In the
cases of carbon, silicon, and germanium, the atoms are identical but their
orientations are slightly different. Since the electron density surrounding the
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Figure 2.8: The atomic scattering factor for Si shown as a function of the
momentum transfer. Also shown is the effect of taking temperature into
account with the addition of a Debye-Waller factor. The points on the solid
line show the tabulated values.

atoms is not exactly spherical, the symmetry that results in the additional
selection rule (the even-indexed peaks with H + K + L 6= 4n are forbidden
in a diamond lattice but not in a fcc lattice) is broken. However, since the
asymmetry is only very slight, these pseudo-forbidden peaks are extremely
weak in comparison to the “true” Bragg peaks (those allowed for both a
fcc and diamond lattice). As a result, the corrections due to this effect are
usually negligible unless one happens to be measuring very near to one of
the pseudo-forbidden peaks. In our case, the reflectivity profiles shown in
Chapters 5 and 6 do scan over one of these peaks at l = 6, which corre-
sponds to the Si(222) Bragg condition that would normally be forbidden
(2 + 2 + 2 6= 4n) in a diamond lattice. Sharp peaks were indeed observed at
this momentum transfer for all samples. In fact, the presence of the peak
was usually a good indication that the sample was aligned properly, since it
was weak enough to scan over, unlike the true Si Bragg peaks. Instead of in-
troducing tedious corrections to the atomic scattering factor, though, these
portions of the data, which usually consisted of only a few data points, were
simply removed so as not to affect the analysis. An example of an extended
x-ray reflectivity profile for which the Si(222) pseudo-Bragg peak has not
been removed is shown in Fig. 3.8.

By extension of Eq. (2.15), the scattered amplitude from all the atoms
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in the unit cell of a crystal is

A = A0r0
1

R0
F (q) (2.18)

where
F (q) =

∑

j∈cell

f(q)eiq·Rj (2.19)

is called the structure factor, since it describes the geometrical arrangement
of the atoms in the unit cell. The sum in this expression is over all the atoms
in the unit cell, each positioned at Rj with respect to the cell origin. Since
this arrangement is usually not spherically symmetric, F (q) is in general
a function of the vector q, unlike the atomic scattering factor. Just as the
atomic scattering factor is the Fourier transform of the electron density of an
atom, the structure factor is the Fourier transform of the electron density of
a crystal’s unit cell. Since the unit cell is the fundamental entity or building
block of a crystal, F (q) is the primary quantity representing the atomic
basis of the crystal structure. For this reason, the structure factor plays a
prominent role in x-ray crystallography.

In the case of a film, the presence of lattice relaxations or distortions in
the film structure often results in the interlayer spacings being dependent on
their vertical positions in the film. For this reason, when deriving a model
to describe the scattered amplitude from a film, the structure factor for the
film is often taken to extend the entire film thickness, with the positions of
the individual atomic layers in the film described by separate parameters
(see Sec. 2.6.3).

2.5.2 Diffraction from a 3D Crystal

The total scattered intensity from a crystal is proportional to the sum of
the amplitudes from all the crystal’s unit cells. It is the combined ampli-
tude from the symmetric arrangement of a large number of unit cells in the
crystal that focuses the scattered x-rays into distinct beams, resulting in the
phenomenon that is commonly referred to as diffraction. For simplicity of
discussion, it will be assumed that the crystal consists of a parallelepiped
with N1, N2, and N3 unit cells in the directions of the three crystal axes
a1, a2, and a3, respectively. However, the arguments that follow are equally
valid regardless of the shape of the crystal in question [56]. The scattered
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amplitude from all these unit cells is

Axtal = A0r0
1

R0
F (q)SN1(q · a1)SN2(q · a2)SN3(q · a3) (2.20)

where SN (x) is the geometric sum

SN (x) =
N−1∑

n=0

eixn (2.21)

=
1− eixN

1− eix
. (2.22)

Since the measured intensity will be proportional to the square modulus of
the amplitude, the quantity of interest is

∣∣SN (x)
∣∣2 =

sin2
(

1
2Nx

)

sin2
(

1
2x

) , (2.23)

which is called the N -slit interference function. An example of this function
is shown in Fig. 2.9 for N = 10. As can be seen, it consists of N − 2
interference fringes between two large peaks whose heights scale as N2 and
widths scale as 1/N . In the limit, N →∞, the N -slit function tends to an
array of Dirac delta functions spaced by 2π in x. In the case of a bulk crystal,
N1, N2, N3 → ∞ and Eq. (2.20) is zero everywhere except when the Laue
conditions, Eqs. 2.7, are satisfied simultaneously. The large peaks in the
N -slit interference function of Fig. 2.9 are thus the Bragg peaks described
in Sec. 2.3.

Since the intensity is proportional to the square modulus of the scattered
amplitude, it can be concluded that the diffraction pattern from a 3D crystal
is zero everywhere except at discrete points that lie on a lattice in reciprocal
space, where the intensity is

IHKL ∝
∣∣∣∣A0r0

1
R0

F (Hb1 + Kb2 + Lb3)N1N2N3

∣∣∣∣
2

. (2.24)

This equation is written as a proportionality relationship since there are a
number of experimental corrections that must still be taken into account,
which will be detailed in Sec. 2.5.4. However, first a discussion of the differ-
ences between the diffraction from a 3D crystal and a 2D film is in order.
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Figure 2.9: The N -slit interference function for N = 10 on (a) a linear
scale and (b) a log scale. The heights of the main peaks scale as N2, their
widths as 1/N , and they become Dirac delta functions as N →∞.

2.5.3 Diffraction from a Film

The conditions for constructive interference (diffraction) from a 3D crystal
result in a lattice of Bragg points in reciprocal space defined by the Laue
conditions. However, in the case of a film, the crystal is only large in two
of the three dimensions. We will operate in the surface coordinate system
of the film, as described in Sec. 2.2, where a′3 is directed along the surface
normal (the z direction) and a′1 and a′2 both lie in the plane of the film and
are thus perpendicular to a′3. In this case, N1, N2 → ∞, and N3 = N is
the number of layers in the film (a film of uniform thickness is assumed for
the time being). Then the third Laue condition, Eq. (2.7c), is relaxed and
the (former) points in reciprocal space defined by Eqs. (2.7a) and (2.7b)
each have a profile like that of Fig. 2.9 extending in the z direction. These
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features are called “rods” due to their one-dimensional nature in reciprocal
space. In fact, such rod-like features are found around the Bragg points
of bulk crystals as well, provided the crystal surface is sharp enough. For
this reason, these features are often referred to as crystal truncation rods
(CTRs) [65].

Regardless of the in-plane structure of the film and substrate, there
is always a CTR for H = K = 0; that is, when q is aligned along the
surface normal (q · r = qzz). This CTR is the specular rod and it offers a
useful probe of the structural features normal to the surface — for example,
vertical layer relaxations — without concern for the details of the lateral
structure of the film or substrate. Such measurements are valuable when
effects due to the lateral structure or in-plane order of the sample are not the
primary focus. Although off-specular rods in principle collectively contain
more information than the specular rod alone, if the in-plane structure of the
film or substrate is not well-ordered, or if it is different for different portions
of the film, the intensity along these rods will either be diffuse or divided
among different regions of reciprocal space (e.g., different surface domains
may have different in-plane orientations). In contrast, the reflectivity rod
contains contributions from all the film overlayers regardless of their in-
plane structure, and absolute information on vertical layer relaxations and
film thicknesses can be obtained. It should be noted that unlike off-specular
rods in most cases, the specular rod always contains contributions from both
the substrate and the film overlayers. Thus, the scattered amplitudes from
both must be added together to calculate the intensity along this rod.

For small momentum transfers (q ¿ 2π/a′3), the intensity along the
specular rod is termed the x-ray reflectivity. It is relatively insensitive to the
discrete atomic nature of the film and may include dynamical effects [54,55].
For higher momentum transfers, diffraction effects due to the crystalline
structure of the film and substrate are evident. The rod profile in this
regime is thus termed the extended x-ray reflectivity. To obtain information
on the atomic-layer structure of the sample, large momentum transfers must
be measured. Thus, for a study of lattice relaxations in film overlayers, or
measurement of the distribution of film thicknesses present with atomic-
layer resolution, the extended reflectivity is the appropriate portion of the
rod to measure.
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2.5.4 Geometrical Correction Factors

The measured intensity is proportional to the square modulus of the to-
tal scattered amplitude. However, the simplified treatment presented thus
far ignores many of the experimental realities of measuring scattered x-ray
intensities. The combined effects of these geometry-dependent correction
factors will be denoted with the symbol C and can be broken up into the
components [66]

C = P CLCRCA (2.25)

where P is the polarization factor, CL is the Lorentz factor, CR is the rod
interception factor, and CA is the beam footprint area correction factor, all
of which will be discussed below. Since these corrections are all specific to
the scattering geometry chosen in the experiment, they in themselves do not
contain any information about the structure of the sample. For this reason,
and for simplicity of analysis, these geometric corrections were applied to the
experimental data before analysis. Thus, most of the x-ray data presented
in this work are the experimentally measured intensities divided by C.

The other corrections discussed in this section are those due to temper-
ature effects and those due to surface roughness. As will be seen, these
effects have more to do with the details of the physical state and structure
of the sample and therefore must in general be taken into account at the
level of the structure factor calculation. Furthermore, additional corrections
to the raw data may be necessary depending on the type of detector used
and the absolute intensity of the scattered x-rays. Such corrections will be
separately discussed in Sec. 3.3.2.

Polarization factor

The factor P introduced in Eq. (2.12) results from the different polariza-
tions of the incoming and outgoing x-ray beams. Specifically, P = |εi · ε∗f |2,
where εi and εf denote the polarization vectors for the incident and scat-
tered waves, respectively. In this work, synchrotron radiation was used
exclusively to obtain the x-ray diffraction data. The x rays produced from
a synchrotron result either from the emission of radiation as the electrons
orbit around the synchrotron ring (bending magnet source) or from the hor-
izontal “wiggling” motion produced as the electrons pass through a series of
vertically-oriented permanent magnets placed in the path of the electrons
(an insertion device). In any case, the acceleration of the electrons is al-
ways in the horizontal plane and hence the emitted x rays will be linearly
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polarized in the horizontal plane as well.§ The polarization factor is thus
P = cos2 ψ, where ψ is the angle between ki and the projection of kf onto
the horizontal plane. For the experiments done in this study, the scattering
plane (the plane formed by ki and kf ) was always horizontal, so in our case
ψ = 2θ and

P = cos2(2θ). (2.26)

To avoid any confusion, it should be noted that most texts quote the
polarization factor as

P ′ =
1 + cos2(2θ)

2
, (2.27)

which is true if the incident x rays are unpolarized. This expression can be
easily obtained by noting that if the experiment had been set up such that
the scattering plane were vertical, then the polarization factor would have
been P = 1. Quantum mechanically, unpolarized x-rays are in a superpo-
sition of two arbitrary orthogonal polarization states, which can be chosen
to be aligned and perpendicular to the scattering plane, respectively. The
scattered x-ray intensity is then the average of the scattering from the two
different polarization states, which yields Eq. (2.27).

Integrated intensity and the Lorentz factor

One would normally assume that the intensity as calculated in the previ-
ous sections would be an observable quantity; however, a number of exper-
imental realities make measurement of such intensities impossible. Sample
defects and mosaicity, finite energy resolution of the monochromatic source,
and angular dispersion of the incident beam will all result in a finite spread-
ing of the scattered beam. As a result, in practice the intensity of either a
2D or 3D region of reciprocal space is measured. This quantity is called the
integrated intensity and is usually measured by scanning an angle with the
diffractometer while measuring the scattered intensity. Hence, the actual
integration is done in angular space, which must be converted to recipro-
cal space to compare it with theoretical models. This can be done using a
standard coordinate transformation for the appropriate diffractometer and
geometry [56, 66–68]. In the end, the integrated intensity is found to be
related to the peak intensity by a factor called the Lorentz factor, which
is equal to the inverse of the Jacobian of the transformation from angular
space to reciprocal space. For measurements along the specular rod, the

§A notable exception to this rule exists in which a specialized undulator can be con-
structed to produce circularly polarized x-rays. However, such devices are rare and were
certainly not used in this study.
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Lorentz factor is simply [66,67]

CL =





1
sin(2α) (rocking curve)

1
sin α (ridge scan)

(2.28)

where α is the angle the incident x-ray beam makes with the sample sur-
face and the terms “rocking curve” and “ridge scan” refer to two different
methods of measuring the specular rod to be discussed in Sec. 3.6.

Rod interception factor

The rod interception factor is related to the manner in which a diffrac-
tion rod from a 2D or quasi-2D system is experimentally measured. These
techniques are discussed in detail in Sec. 3.6, when the origin of the rod in-
terception factor will be illustrated more clearly. However, a brief discussion
of the correction it entails is presented here for the sake of completeness.

The acceptance area of the detector is usually defined using a pair of
slits. Such slits are generally perpendicular to each other and to the direc-
tion of the x-ray beam being measured. With the rocking curve method of
measuring the integrated intensity of the specular rod, these detector slits
are scanned across the specular condition to obtain a cross-sectional pro-
file of the rod from which the background and integrated intensities can be
determined. The resulting integration volume from such a procedure sam-
ples a slice of the specular rod that has a finite thickness in the z direction
and that varies depending on the slit settings and angles of incidence and
reflection (see Fig. 3.11). Specifically, the thickness of the cross-sectional
slice is proportional to cosβ, where β is the angle the scattered x rays make
with the sample surface [see Eq. (3.9)]. Hence, as the intensities at different
places along the specular rod are measured (using the same slit settings),
the magnitude of the integrated intensity varies as

CR = cosβ. (2.29)

This factor is only necessary for data collected using the rocking curve
method.

Beam footprint area

The measured intensity from a diffraction feature of a film will be pro-
portional to the illuminated area of the sample. Actually, the area of the

32



2. SURFACE X-RAY DIFFRACTION

sample that will contribute to the signal measured is the intersection of the
projected areas of the beam footprint on the sample and the areal accep-
tance of the detector being used. In addition, angular dispersion of the
source x-ray beam and finite angular acceptance of the detector should in
principle also be accounted for [66, 67]. However, in practice, the detector
slit settings are generally chosen such that the entire illuminated area of
the sample is accepted, and with modern beamline optics and proper col-
limation of the scattered beam, angular dispersion is usually negligible. In
particular, for the specular geometry, in which the beam footprint seen from
the perspective of the detector is simply the incident beam profile (usually
on the order of 0.5 mm× 0.5 mm), acceptance of the fully collimated beam
by the detector is generally not a problem and the correction factor can be
regarded as equal to the illuminated area of the sample. Assuming that
the sample subtends the entire width of the beam, the area of the beam
footprint in a specular geometry is proportional to

CA =
1

sinα
(2.30)

where α is the angle the incident x rays make with the sample surface.

Debye-Waller factor and TDS

So far, it has been assumed that the atoms occupy fixed positions within
the crystal lattice. However, thermal fluctuations in the atomic positions will
be present at any finite temperature. Two effects arise from these thermal
vibrations. First, a Debye-Waller factor of the form e−M must be included
in the structure factor, where M ≡ 1

2 〈q · u〉2 and u is the displacement
vector of the atoms from their equilibrium positions in the crystal due to
thermal vibrations [56]. Since atoms of different materials will respond dif-
ferently to thermal excitations, M will be dependent on both temperature
and material. Thus, a unit cell that contains atoms of many different types
will need to have the correct Debye-Waller factor applied to each atom in
the structure factor. For this reason it is often most appropriate to apply
the Debye-Waller factor directly to the atomic scattering factors. Although
theoretically-derived values for the Debye-Waller factor are available [69], in
the case of a film, where the response of the atoms to thermal excitations is
not necessarily the same as their bulk counterparts, it is generally left as a
free parameter that is determined from a fit to the experimental data. An
example of the effect the Debye-Waller factor has on the atomic scattering
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factor of a Si atom can be seen in Fig. 2.8.
Of course, the vibrations of the atoms in a crystal are not isotropic,

but are subject to the spectrum of different phonon modes for the material.
This fact results in a second temperature-related phenomenon called thermal
diffuse scattering (TDS). In terms of effects on the scattered intensity, TDS
appears as a series of broad diffuse peaks in reciprocal space emanating in
high-symmetry directions from the Bragg points. As such, TDS does not
interfere much with the comparatively sharp diffraction features presented
in this work and can be considered part of the background that is subtracted
from the signal.

Roughness

There are two different mtehods that can be used to account for the
roughness of a sample surface. First, a simple model of the statistical prop-
erties of the surface roughness can be assumed and the results on the mea-
sured intensity profile calculated analytically. This method has been shown
to work well for a variety of different surfaces by assuming an exponential
distribution of heights on the surface [65]. In this model, layer 0, at the
lowest (inner) end of the roughness boundary region, is assumed to be fully
occupied, layer 1 right above it has a fraction β of sites occupied (not to be
confused with the angle β), layer 2 has fraction β2, etc. The intensity from
such a surface is related to the ideally truncated surface by an additional
multiplicative factor

Irough = Iideal
(1− β)2

1 + β2 − 2β cos(q · a3)
. (2.31)

Alternately, the distribution of heights present on the surface can be de-
scribed explicitly, with the relative site occupancy of the different layers in
the boundary region included as free parameters to be determined by a fit
to the experimental data. Such a method requires a diffraction profile with
enough information that the free parameters are sufficiently constrained.

In the case of a supported film, there are two physical regions in which
roughness is present. First, the thickness of the film itself (i.e., the num-
ber of atomic layers on top of the substrate) will not be perfectly uniform,
resulting in a distribution of thicknesses. In our case, it will be found that
the lattice structure of the film overlayers is itself thickness-dependent, so
the surface morphology must be described explicitly. Since the films studied
will have thicknesses less than 20 AL, the intensity along the specular rod
will have a rich structure with enough information to determine the film

34



2. SURFACE X-RAY DIFFRACTION

roughness explicitly, following the second method outlined above. Second,
the underlying substrate on which the film is grown is not a perfectly flat
surface. Since this roughness is due to statistical variations related to the
sample preparation, it can be described using Eq. (2.31). However, clean
Si(111) surfaces have been found in previous studies to have very small de-
grees of roughness [65], which was also found to be the case in this study,
where the data analysis was found to be unaffected by inclusion of such a
factor.

2.6 Extended Reflectivity of a Pb/Si(111) Film

2.6.1 Overview

In this section, the formulas derived in the previous sections of this chap-
ter are applied to generate explicit equations for the extended reflectivity
of a Pb/Si(111) film. These equations will then be used in a least-squares
algorithm in Chapters 5 and 6 to fit experimental data. Since we are only
concerned with the specularly reflected intensity, the momentum transfer
vector is parallel to the surface normal (the z direction). Using the surface
coordinate system described in Sec. 2.2.3, q · a1 = q · a2 = 0 and the scat-
tering amplitude is dependent only on qz. Thus, only the positioning and
relative occupancy (density) of the atomic planes of the film and substrate
in the z direction affect the reflectivity. By convention, the momentum
transfer is specified using the reciprocal lattice units of the substrate; hence,
in this work, the momentum transfer will be quoted with the index l, the
perpendicular momentum transfer in Si(111) reciprocal lattice units (1 r.l.u.
= 0.668 Å−1):

l =
aSi

√
3

2π
qz. (2.32)

Using this convention, the Si(111) Bragg peak will appear at l = 3, whereas
since Pb has a lattice constant roughly 10% larger than Si, the Pb(111)
Bragg peak will appear at l ≈ 3.3.

Two distinct surface morphologies were encountered in the experiments.
In Chapter 5, films were grown at 110 K in progressive steps, where the
thickness of the film was varied by deposition of additional Pb on the sam-
ple surface. In these experiments, the film growth was found to follow a
layer-by-layer mode in which closed films form with low degrees of rough-
ness. Since the temperature was held constant, the film morphology was
effectively frozen in place and can be considered to be more-or-less uniform
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over large lateral distances. An intensity calculated assuming only coherent
contributions to the intensity is appropriate for such a morphology.

In contrast, Chapter 6 presents experiments where the Pb deposition
was only done once per sample. After deposition, the films were annealed
to progressively higher temperatures. Eventually, the additional thermal
energy is enough that the atoms on the sample surface begin to rearrange
themselves into nanostructures that are more stable than the closed films
present immediately after deposition. If the distances between such struc-
tures is large enough, an incoherent contribution to the measured intensity
may be discernible. In this case, the total intensity results from the incoher-
ent addition of the scattered intensities from different regions of the surface.
The formula for the reflected intensity differs somewhat for such a sample,
with the introduction of a partial coherence factor necessary.

2.6.2 Substrate Amplitude Contribution

Since the reflectivity rod of the film overlayers coincides with that of the
substrate, the scattered amplitudes from the two must be added together.
All the substrates in this study were pretreated by a method that has been
shown to result in a bulk-truncated Si(111) surface (see Sec. 3.5.2). Ignoring
for the time being any lattice relaxations near the surface of the Si crystal,
the contribution of the substrate to the scattered amplitude is that of a
semi-infinite crystal truncated at z = 0 and extending in the −z direction

ASi(qz) ∝ σSiFSi(qz)
∞∑

j=0

e−iqzaSi

√
3j , (2.33)

where σSi is the atomic density of a Si(111) plane, aSi

√
3 is the length of the

unit cell in the [111] direction, and FSi(qz) is the structure factor of Si as
a function of the perpendicular momentum transfer. In the [111] direction,
the Si unit cell consists of three equally spaced bilayers, with the interlayer
spacing within each bilayer being 1

12 of the total unit cell length (see Fig. 2.3).
For the purpose of calculating the reflectivity, the different in-plane atomic
arrangements of the three bilayers in each unit cell are immaterial and the
three bilayers can be treated identically. Thus, the reflectivity structure
factor for Si is

FSi(qz) = fSi(qz)e−MSi

(
1 + e−iqzaSi

√
3/12

)

×
(
1 + e−iqzaSi

√
3/3 + e−iqzaSi2

√
3/3

)
(2.34)
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Figure 2.10: Roughness in the film will manifest itself at the atomic scale
as a distribution of thicknesses {N}. Since the relaxation of each atomic
layer will depend on its position relative to the film boundary, the posi-
tions of the layers from regions of different thicknesses will tend to differ.
To account for this effect in the reflectivity, either the exact positions of
the layers for each region of thickness need to be known, or an effective
distribution in z can be used analogous to a Debye-Waller factor.

where the first term in parentheses is due to the interlayer spacing within
each bilayer and the second is the three instances of the bilayer per unit cell.
Equation (2.33) then becomes

ASi(qz) ∝ σSifSi(qz)e−MSi

(
1 + e−iqzaSi

√
3/12

) ∞∑

j=0

e−iqzaSi

√
3j/3 (2.35)

= σSifSi(qz)e−MSi
1 + e−iqzaSi

√
3/12

1− e−iqzaSi

√
3/3

. (2.36)

The presence of lattice relaxations in the top substrate layers can be taken
into account by adding additional Si layers to this amplitude that have
adjustable vertical positions. Such an effect was included in analysis of
some of the data; however, due to the much greater electron density of the
Pb overlayers it was found that effects due to lattice relaxations of the top
Si layers were not observable. As such, all of the results presented do not
include any parameters describing substrate layer relaxations.

2.6.3 Film Structure Factor

Allowing for possible lattice distortions in the film in the direction of the
surface normal, the amplitudes from all the film layers will be included in
the structure factor of the film. The scattered amplitude from the film is
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then
APb ∝ σPbFPb(qz) (2.37)

where σPb is the atomic density of a bulk Pb(111) layer. Note that since
Si has a diamond lattice structure and Pb has a fcc lattice structure, their
(111)-surface atomic densities are related by

σPb

σSi
=

(
aSi

aPb

)2

. (2.38)

Following prior work in the literature, the structure factor for the film is
usually written as [60,70]

FPb(qz) = fPb(qz)
Nmax∑

j=1

θje
iqzzje−

1
2
q2
zζ2

j (2.39)

where Nmax is the number of atomic layers in the thickest portion of the film
and θj is the fractional occupancy of layer j. The last exponential term is
similar to a Debye-Waller factor and accounts for a finite layer distribution in
z, where ζj is the root-mean-square displacement of the atoms in layer j from
their average position, zj , which is measured relative to the Si surface. This
term is particularly important in systems with substantial lattice relaxations
since the atomic layers in regions of different thicknesses will in general not
line up. This effect is expected to be larger for near surface layers, as
illustrated in Fig. 2.10. The ζj values for these layers will have a significant
component due to the static displacements of the layers in different regions,
resulting in a value that depends on j. For films with significant roughness
— i.e., with a wide range of thicknesses — the number of independent zj ,
θj , and ζj parameters can become quite large.

Alternatively, in a model that describes the film layer structure more
precisely, where the zj parameters are different for each thickness N , the ζj

parameters will be approximately independent of j and can be taken outside
the sum as a standard Debye-Waller factor e−MPb . In such a model, the film
contribution to the structure factor is written as

FPb(qz) = fPb(qz)e−MPb
∑

N

pN

N∑

j=1

eiqzzj,N (2.40)

where pN is the fractional surface area covered by N Pb layers and the first
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sum is over all thicknesses present in the film. That is,

θj =
∑

N≥j

pN , (2.41)

and ∑

N

pN = 1. (2.42)

In this scheme, the coverage of the film, which is proportional to the total
number of Pb atoms in the film and is measured in AL of Pb,∗ is

Θ =
∑

N

NpN . (2.43)

Generalizing the zj values to be N -dependent will add numerous addi-
tional parameters if they are taken as independent degrees of freedom, which
can substantially complicate the data analysis. To avoid this difficulty, a
physical model is derived in Sec. 4.4 that describes the lattice distortions.
From this model, the zj,N are calculated using only a small number of ad-
justable parameters, eliminating most of the independent variables. This
model for the x-ray reflectivity has far fewer degrees of freedom than the
model using Eq. (2.39), yet was found to reproduce the results with a sim-
ilar degree of precision, indicating that the zj,N values calculated with the
lattice distortion model accurately reflect the actual film morphology.

2.6.4 Calculation of the Measured Intensity

As discussed in Sec. 2.6.1, any sample will have regions of different thick-
nesses. If the lateral distances between these regions is much smaller than
the coherence length of the scattered x rays, the integrated intensity is pro-
portional to the coherent sum of the contributions from the substrate and
the Pb overlayers

Icoh(qz) ∝ C ∣∣ASi(qz) +APb(qz)
∣∣2, (2.44)

where C is given by Eq. (2.25). Equation (2.44) is written as a proportion-
ality relationship since in practice only the relative intensity is measured;
thus, an arbitrary scale factor must be included when comparing theoretical
calculations with empirical measurements.

∗In other texts, coverages are often quoted in “monolayers”, which may be relative to
the atomic surface density of either the film or substrate. Here the unit of “atomic layer”
is used, which is less ambiguous. In terms of coverage, 1 AL is equal to a monolayer in
Pb units.
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Figure 2.11: Examples of the extended reflectivity for two different Pb
films on Si(111) substrates. The intensities using both the coherent and
incoherent calculations are shown. (a) A film with a significant degree of
roughness (5.7 Å rms). Few interference fringes are present between the Pb
Bragg peaks at l ≈ 3.3 and 6.6. (b) A film with a low degree of roughness
(2.3 Å rms). More interference fringes are evident, with the profile very
similar to the ideal N -slit interference function shown in Fig. 2.9(b). Tak-
ing into account the incoherent addition of regions of different thicknesses
tends to raise the relative intensity of the profile between the Bragg peaks
and diminish the interference fringes. In both cases, the distribution of
thicknesses used to calculate the profiles, which include a wetting layer, is
shown in the insets.
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If regions of different thicknesses are separated by significant lateral dis-
tances, the reflected intensity will have a component due to incoherent scat-
tering from these different regions. In the extreme case, where all the thick-
ness regions add up incoherently, the total intensity is the weighted sum of
the intensities from each separate region, which consists of a single height
island surrounded by a wetting layer. Since the wetting layer fills in the
space between the different thickness regions, it will contribute coherently
in each case. The structure factor for a region with islands that are N layers
thick surrounded by the wetting layer is thus

FN
Pb(qz) = fPb(qz)e−MPb


p1e

iqzz1 + (1− p1)
N∑

j=1

eiqzzj,N


 (2.45)

and the total scattered intensity is the incoherent sum of the intensities from
each individual thickness region is

Iincoh(qz) ∝ C
∑

N>1

pN

1− p1

∣∣∣ASi(qz) + σPbF
N
Pb(qz)

∣∣∣
2
. (2.46)

Note that in the ideal case where the surface consists of islands of only one
thickness separated by regions covered only by the wetting layer, Eq. (2.45)
reduces to Eq. (2.40) and Eq. (2.46) reduces to Eq. (2.44); i.e., the incoherent
and coherent intensities are equivalent, as one would expect.

In actuality, the reflected intensity is likely some combination of coherent
and incoherent scattering from regions of different thicknesses, in which case
the measured reflected intensity is

I(qz) = ΛIcoh(qz) + (1− Λ)Iincoh(qz) (2.47)

where Λ is a partial coherence factor (0 ≤ Λ ≤ 1), which is treated as a
fitting parameter in the analysis. The calculated extended x-ray reflectivity
for two different Pb films is shown in Fig. 2.11 to illustrate the effects of
roughness and the coherence factor on the rod profile. In this graph, the re-
flectivity is plotted as a function of l, as defined in Eq. (2.32). Figure 2.11(a)
shows the reflectivity profile for a rough film (5.7 Å rms), with the pN dis-
tribution shown in the inset. Both the coherent (solid curve) and incoherent
(dotted curve) intensities are shown. The main features in both cases are
the Si(111) Bragg peak at l = 3 and the Pb(111) and (222) Bragg peaks at
l ≈ 3.3 and 6.6, respectively. In between the Pb Bragg peaks are relatively
few fringes due to the significant film roughness. In contrast, the calcula-
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tion for a smooth film (2.3 Å rms), shown in Fig. 2.11(b), exhibits more
pronounced interference fringes very similar to the N -slit function profile in
Fig. 2.9(b). From this figure two primary effects due to the coherence factor
are apparent. First, the ratio between the intensities at the in-phase (Bragg
peaks) and out-of-phase conditions (midway between the Bragg peaks) for
Pb is different, with the incoherent profile being on average more intense
than the coherent profile. Second, the interference fringes are more pro-
nounced in the coherent calculations than the incoherent ones.
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3 Experimental Methods

3.1 Introduction

This chapter provides an overview of the methods and equipment that were
used in the experimental portion of this work. Since all of the experiments
involved the preparation of the samples in an ultrahigh vacuum (UHV)
environment, a brief introduction to this technology as well as a general de-
scription of the vacuum setup used will be given. However, since a complete
understanding of vacuum technology and UHV hardware is not necessary
to understand the results presented here, the focus will be primarily on the
equipment and procedures used specifically in the experiments described in
this work. The interested reader is directed to other sources [71–73] for a
more comprehensive discussion of UHV technology and its applications.

Next, various different methods and instruments used to detect x rays
are described. Although there exists a wide range of sophisticated detectors
to choose from [74–76], the discussion in this chapter will focus on those
that were used in this study, which were all single-channel photon counters
(point detectors).

Since x rays interact weakly with matter, the use of a high-brilliance
synchrotron source is all but necessary to do high-resolution atomic-scale
studies. All of the experimental data in this work were collected using
monochromatic x rays from an undulator source at a third-generation syn-
chrotron storage ring. This facility and the experimental equipment used
there are described along with a brief overview of how the x-ray beam is
generated and produced.

Then the methods used to prepare the samples and to grow the metal
films are discussed. In particular, it was found that a pretreatment of the
semiconductor substrates greatly improved the quality of the metal films.
The resultant films after deposition have near-atomic uniformity in thickness
that enables monolayer-resolved studies to be done. Such a pretreatment
also results in a bulklike truncation of the Si substrate which simplifies the
analysis and provides a sharp buried interface that enhances the quantum
confinement effects that will be studied.
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Finally, two different techniques for measuring the x-ray reflectivity rod
are presented. The rocking curve method provides highly accurate data
over the widest range of momentum transfer and is traditionally the one
most widely used for high-resolution CTR measurements; however, it re-
quires a great deal of time to acquire a single set of data. Due to the time
constraints on experiments at a synchrotron facility, such a time-consuming
method makes a study difficult when the measurements need to be repeated
frequently for the same physical sample. The ridge scan method of collecting
the extended x-ray reflectivity solves this problem by collecting the entire
reflectivity rod in just 1–3 scans, which greatly reduces the amount of time
needed to acquire a single set of data. Both methods have certain limitations
and advantages over the other that will be discussed in detail. For the range
of momentum transfer studied in this work the two methods were found to
yield equivalent data.

3.2 Ultrahigh Vacuum

3.2.1 Characteristics

For a study of the atomic-scale properties of surfaces, precise control of the
preparation and cleanliness of the sample surface is essential. Since a surface
by definition is exposed to the ambient environment, it is always subject to
contamination. In the case of a reactive surface, residual gas atoms may
chemically bond with exposed atoms at the surface to form molecular com-
pounds of the material that are not desired (an oxide layer, for instance).
However, even an inert sample will have condensed layers of gas atoms or
molecules adsorb onto it. Herein lies the utility of a vacuum chamber. By
removing the bulk of the ambient gas in a controlled environment, a sample
surface can be kept clean for an extended period of time during which it can
be manipulated in a controllable and repeatable manner to study the physi-
cal processes at work. Depending on the application to be performed on the
surface, different pressure ranges are needed. The highest degree of vacuum
(i.e., with the lowest ambient pressure) is termed ultrahigh vacuum and it
requires special procedures and equipment to produce and maintain. The
different classes of vacuum and their pressure ranges are shown in Table 3.1.

Although the Système International unit of pressure is the Pascal (N/m2,
abbreviated as Pa), traditionally in high-vacuum science the unit of torr
(mm Hg) is used, named after Evangelista Torricelli (1609–1647), the inven-
tor of the mercury barometer and a contemporary of Galileo. Another unit
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Name Pressure
Range (torr)

Monolayer
Formation Time (s)

Mean Free
Path (m)

Low (Rough) 760 – 10−3 10−9 – 10−4 10−6 – 10−2

High 10−3 – 10−8 10−4 – 10 10−2 – 104

Ultrahigh 10−8 – 10−9 10 – 500 104 – 105

10−9 – 10−10 500 – 104 105 – 106

< 10−10 > 104 > 106

Table 3.1: Various pressure ranges and some of the typical characteristics of the
vacuum environment in those ranges. All values should be taken as approximate
orders of magnitude for a typical vacuum system.

that is commonly used is the millibar (mbar). The conversion amongst these
units is 0.75 torr = 1 mbar = 100 Pa. One atmosphere (atm) of pressure is
equal to 760 torr = 1013 mbar = 105 Pa.

A rough indication of the length of time a sensitive sample surface can
be kept clean in a vacuum environment is the time it takes for a single layer
of molecules to form on the surface assuming a unity probability for sticking.
This quantity can be estimated by calculating the arrival rate of atoms on
the surface given the molecular density of the ambient gas [71] and is called
the monolayer formation time. The monolayer formation time for different
pressure ranges is shown in Table 3.1, where it can be seen that in order
to keep a sample surface in good condition for more than a few minutes,
pressures on the order of 10−10 torr must be achieved, which is well into the
UHV regime.

In addition to being able to keep a sample surface clean, a vacuum envi-
ronment also enables the use of a variety of techniques essential for surface
science due to the increased mean free paths. When the mean free path
of particles in a system is greater than the system size, the gas molecules
are said to be in the molecular flow regime. In this regime, the behavior
of particles in the gas phase is no longer dominated by interparticle colli-
sions, as with a gas at atmospheric pressure. This regime is in contrast with
the viscous flow regime, in which a gas behaves like a fluid, with pressure
differentials and possibly turbulence governing the diffusion properties of
the molecules. Operating in the molecular flow regime is required for tech-
niques that rely on focused particle beams, such as electron diffraction, ion
sputtering, molecular beam epitaxy, electron microscopy, etc.
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3.2.2 Vacuum Pumps

In order to achieve and maintain UHV pressures, specialized pumps must be
used both to initially evacuate the chamber and then to balance the gas load
that is constantly being produced by outgassing from exposed surfaces and
diffusion into the chamber. In all cases, any one pump is only appropriate
for a certain range of pressures; hence, a series of different pumps must be
used in sequence to attain very low pressures.

Roughing pump

A “roughing” pump is so named because it is meant to bring or maintain
a system at rough vacuum pressures. These pumps perform the bulk of
the volume gas removal of the vacuum chamber during the initial stages
of evacuation. They rely on pumping mechanisms that are appropriate for
gases in the viscous flow regime. Specifically, they all generally consist of a
chamber that changes its configuration in such a way that it sucks gas in
one end and spits it out the other. They accomplish this by compressing
the gas coming in an inlet and physically transporting it to an exhaust port.
This process relies on the fluidic properties of the gas. Many ingenious
designs have been developed to do this sort of pumping, which are discussed
elsewhere in exhaustive detail [72, 73]. The base pressure achievable with a
roughing pump is usually on the order of 10−3 torr. Since roughing pumps
are generally sealed with oil, which is a highly undesirable substance to
get in an UHV chamber (see Sec. 3.2.3), these pumps are never connected
directly to the chamber but are rather used to “back” the outlet of another
pump, usually a turbomolecular pump, as a final stage in a chain of pumping
stations. In the experimental setup used for this research, either a rotary
vane pump or a scroll pump was used as a roughing pump.

Turbomolecular pump

The turbomolecular (or “turbo”) pump is often the workhorse for sys-
tems that only require high vacuum conditions and is the pump of choice to
initially evacuate an UHV chamber to these pressures. It consists of a series
of turbines that spin at high speeds (10 000–100 000 rpm) to impart momen-
tum to ambient gas molecules preferentially in a certain direction (namely,
toward the pump’s outlet). A turbo pump has high pumping speeds, low
ultimate pressures, and operates cleanly (little backstreaming of oils into
the chamber) and reliably. Typically, a turbo pump can maintain pressures
on the order of 1 × 10−7 torr or below. The blades of the turbines in a
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turbo pump impart their momentum to the gas molecules most efficiently in
the molecular flow regime. Therefore, they are not suitable for exhausting
directly to atmospheric pressure and must be backed by a roughing pump of
some sort, as described above. In the case of an UHV system, turbo pumps
are generally used to get the pressure of the vacuum chamber low enough
that an ion pump can be used, at which time the chamber is sealed off from
the surrounding atmosphere and the turbo pump disconnected.

Titanium sublimation pump

The titanium sublimation pump (TSP) reduces the pressure inside a
vacuum chamber not by moving gas molecules from the interior to the ex-
terior of the physical system, as is done by the pumps described thus far,
but rather it traps them by chemically bonding gas molecules into solid
compounds in a process called gettering. The pump itself simply consists
of a filament of titanium that is heated up using a high alternating current
(∼50 amperes) that sublimates a fresh layer of titanium on the surrounding
walls. The chemically reactive titanium traps (getters) the residual gases
in the chamber by forming solid compounds (e.g., titanium oxide), thereby
removing them from the vacuum. Eventually, the titanium film becomes
saturated and a new film of the metal must be sublimated. Hence, the TSP
is generally only used at very low pressures. The use of titanium as a getter-
ing agent results from its relatively low cost, low sublimation temperature,
and its chemical reactivity with a wide range of different gases. However,
due to the chemical nature of the pumping mechanism, the TSP does not
pump inert gases such as helium or argon.

Sputter-ion pump

A sputter-ion pump, often referred to simply as an “ion pump,” is the
most important pump in most UHV systems. Its general principle of oper-
ation is to ionize any gas molecules that happen to wander into the body
of the pump and then accelerate those ions through a high-voltage electric
field and bury them into the pump surfaces. The ions are produced through
collisions with high energy electrons that are discharged from the cathode.
The probability of producing a collision between these electrons and the gas
molecules in the vacuum is increased by confining the electrons to spiral
paths with magnetic fields produced by strong permanent magnets on the
outside of the pump. Some of the cathodes in the pump are made of titanium
or tantalum, which are sputtered by the high-energy gas ions impinging on

47



3. EXPERIMENTAL METHODS

them, depositing fresh layers on the surrounding surfaces. These surfaces
pump additional gas molecules by gettering, similar to a TSP. In addition,
the sputtered material can further bury molecules that are already embed-
ded near the anode. The ion pump is generally the pump of choice for the
standard UHV system, for it is clean (no oils), is dependable (no moving
parts), has a long service life (easily several decades if treated properly),
and has a very low ultimate pressure (∼10−11 torr). The ion pump will also
pump all kinds of gas molecules, including inert gases such as argon. As the
pressure in the chamber decreases, the ionization current decreases propor-
tionately, which can be used to measure the pressure inside the chamber.
However, usually an ionization gauge (Bayard-Alpert) is used instead, which
measures an ionization current much in the same manner as an ion pump
but is optimized for measuring pressures instead of pumping gases.

3.2.3 Achieving UHV

Getting a chamber down to UHV pressures is not just a matter of using the
right pumps. Care must be taken to ensure that the inside surfaces of the
pumping chamber and all materials inside are extremely clean and free of
grease or oils. Indeed, any material that has a high vapor pressure is unsuit-
able for use inside an UHV chamber. In addition, since part of the process of
getting to UHV pressures involves heating up the chamber and all its inner
components to 100–200◦C (see “Baking out” below), all the materials used
in the construction of the chamber and its constituent parts (including sam-
ples and instruments) must be able to withstand heating to this temperature
range for 12–24 hours. Generally, the chamber and as many of its parts as
possible are made from vacuum-fired 300-series stainless steel. Other com-
mon materials used are aluminum, copper (oxygen free high-conductivity,
preferably), tungsten (for filaments), glass, quartz, and ceramics. Electrical
insulation is accomplished with glass beads, pieces of alumina, or sometimes
sheets of mica. All removable parts of the chamber (port holes, instrument
connections, windows, etc.) are connected to the chamber via flanges with
copper gaskets sandwiched between opposing knife edges. To ensure that all
materials that go into the UHV chamber are absolutely clean, new equip-
ment that will be in the vacuum is either electropolished, acid etched, or at
least scrubbed clean and degreased with organic solvents in an ultrasound
bath. All components must be handled with surgical gloves and similarly
degreased tools.
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Procedure Pump(s) Used Pressure
Range (torr)

Time
(hours)

Volume gas removal Roughing 760 – 10−3 0.1 – 0.2
Pumping down to high
vacuum

Turbo + Rough 10−1 – 10−7 1 – 5

Seal off chamber,
pump to unbaked base
pressure

Ion 10−6 – 10−9 2 – 8

Bakeout Ion 10−6 – 10−8 12 – 24
UHV experiments Ion, TSP 10−10 – 10−11 —

Table 3.2: A typical procedure for pumping down a vacuum chamber to UHV
pressures, the pumps used in each step, and the typical time taken.

Pumping down

The actual pump down of the UHV chamber follows a logical progres-
sion of steps to incrementally get from atmospheric pressure down to UHV.
These steps are outlined in Table 3.2. First, the bulk volume of the gas
in the chamber is removed with a roughing pump through a turbo pump.
In practice, the turbo pump is generally started at the same time as the
roughing pump since it takes it awhile to accelerate the turbines to effective
pumping velocities. By the time the turbo is up to speed, the chamber is
usually roughed out and the turbo automatically takes over as the primary
pumping mechanism, backed by the roughing pump. The chamber is evac-
uated to high vacuum using the turbo pump, which may take 1–5 hours,
depending on the size of the chamber and other factors. Once the chamber
pressure is in the vicinity of 10−5–10−6 torr, the ion pump is turned on and
a valve between the chamber and the turbo pump closed. At this point, the
chamber is sealed from the exterior atmosphere. The ion pump is then run
for a few hours to get the chamber to a modest pressure before the bakeout
is started.

Baking out

The bakeout is a critical process for achieving low UHV pressures. The
rate-limiting process that prevents an unbaked system from getting below
around 10−9 torr is desorption of gases from the interior surfaces of the
chamber and its components. A system that was at atmospheric pressure
will have multiple layers of material (mostly water vapor) adsorbed to its
internal surfaces. When the system is evacuated to low pressures, these
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adsorbed layers will slowly outgas into the chamber. Left alone, these ad-
sorbed layers can continue to outgas for years, preventing the pressure from
getting below ∼10−9 torr. Luckily, this process can be accelerated by orders
of magnitude by “baking” the system at high temperatures (> 100◦C) for
an extended period of time (12–24 hours).∗ Following this bakeout, any
samples or equipment in the chamber that may be subsequently heated up
during operation (e.g., filaments, evaporation crucibles) are outgassed near
their operating temperatures to minimize any contamination of the vacuum
environment during the experiment. The need for baking can be partly less-
ened by carefully venting the system with dry nitrogen gas when bringing
it back up to atmospheric pressure and keeping the chamber closed off from
the ambient environment; however, in general, baking out the chamber is a
requirement for reaching low UHV pressures.

After a thorough bakeout, the gas load due to desorption from the in-
ternal surfaces of the system is usually replaced by other factors that limit
the ultimate base pressure of the UHV chamber. Namely, the outdiffusion
of gases from the solid materials inside the system and permeation of gases
through the chamber walls and seals. In particular, the stainless steel that is
used to build the vacuum chamber generally contains a significant amount
of hydrogen that diffuses into it during the high-temperature fabrication
process. This hydrogen will slowly diffuse to the surface of the walls of the
chamber and outgas into the interior. To complicate matters further, due
to its low atomic weight, hydrogen is usually one of the gases pumped less
efficiently by ion pumps. Hence, in a clean, well-baked UHV chamber, the
dominant residual gas at base pressure is usually hydrogen.

3.3 X-Ray Detectors

3.3.1 Point Detectors

The simplest form of x-ray detector is one which simply counts photons. This
type of detector is also called a point detector since it does not distinguish
between photons measured at different areas of its active surface. All of
these detectors rely on an ionization process of some kind, either in a gas or
in a solid. In any case, the number of ionization events, which is (ideally)
proportional to the intensity of the incident x rays, is quantified in the
form of pulses, which are then counted by accompanying electronics. If

∗Hence the ever-present tin foil that covers most UHV chambers, which is wrapped
around the system to create an oven effect, evening out and increasing the temperature
of the bakeout.
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used to measure the intensity of diffracted beams from the sample, the
active area of the detector is usually defined by a pair of slits that can
be adjusted to change the angular resolution of the measurements. Point
detectors have the advantage that their angular and directional acceptance
can be easily specified, while blocking out unwanted background sources of
radiation such as upstream† air scattering. Hence, these detectors effectively
measure a “point” in reciprocal space, providing high-resolution data with
a good signal-to-background ratio.

Ion chamber

The ion chamber detector is essentially a parallel plate capacitor that is
held at a high voltage (a few hundred volts, usually) and with a distance
between the plates large enough to allow an x-ray beam to pass through. The
x rays will ionize a portion of the gas molecules between the two plates. The
electron-ion pairs are separated by the electric field produced by the voltage
differential and collected at the two plates. This process produces a small
ionization current that is proportional to the number of ions produced. This
current is then amplified and converted to a frequency that is subsequently
counted by the counting electronics. The ion chamber can be simply open
to the ambient environment or it can be sealed and filled with other gases,
depending on the application. The linearity of the detector’s response to
an incident energy is dependent on the type of gas in the ion chamber as
well as the wavelength of the x rays being measured. The ion chamber has
the advantage that it can be easily configured as a pass-through detector
where only a small portion of the x-ray beam is absorbed by the gas in the
chamber and the rest is left unmolested to be used downstream. Such a
detector is useful as a monitor of the intensity of the x-ray source, which
will vary slightly over the duration of the experiment. In the present work,
ion chambers were used in such a capacity to normalize the experimental
data as described in Sec. 3.3.2.

Scintillation detector

A scintillation detector has two separate components. The initial com-
ponent is composed of a (solid) material that easily fluoresces (scintillates)
when exposed to x rays. The visible light photons then hit the photocathode
of a photomultiplier tube, which produces an electrical pulse whose height

†The terms “upstream” and “downstream” are often used to refer to relative positions
along the beamline. “Upstream” refers to the direction towards the x-ray source.
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is roughly proportional to the energy of the incident x ray. Hence, a scintil-
lation detector has a modest degree of energy resolution that can be used to
filter out higher energy x rays from higher harmonics or lower energy x rays
from sample fluorescence. Such filtering can be done with a discriminator,
the windows of which can be set by monitoring the pulses from the detector
with an oscilloscope. The accepted pules are then shaped and counted by
the appropriate electronics. A scintillation detector is quick, efficient and
very sensitive. In fact, one must be careful not to expose the scintillation
material to the direct x-ray beam (or any other very intense beam, such
as that from a Bragg peak) without reducing the intensity of the x rays,
otherwise the scintillation material can be damaged. A scintillation detec-
tor was the primary detector used to collect the diffracted intensities in the
experiments.

PIN diode

The final detector that will be discussed is the PIN diode. This device
is a solid-state detector comprised of three adjoining pieces of silicon: a p-
type portion, an intrinsic portion, and a n-type portion. This configuration
is responsible for the acronym in the moniker of the detector. When the
intrinsic silicon portion is exposed to x rays, electrons are excited from the
valence band into the conduction band, creating an electron-hole pair. A
high bias voltage across the diode separates the electron from the hole much
as the high voltage in the ion chamber separates the electron-ion pairs. The
PIN diode is thus a solid-state version of the gas-filled ion chamber, with
the difference that it takes ∼30 eV to create a electron-ion pair in the ion
chamber whereas for the intrinsic silicon it is closer to 3 eV. A PIN diode is
thus much more sensitive. A PIN diode detector is very linear with a wide
dynamic range (10–106 c/s) over a broad range of energies (5–25 keV). Like
the ion chamber, though, it provides no energy resolution. In this research,
a PIN diode was often used during orientation of the sample, since it is not
prone to damage due to intense beams from bulk Bragg peaks.

3.3.2 Measurement Corrections

In addition to the correction factors discussed in Sec. 2.5.4, there may be
additional corrections that need to be be made depending on the type of
detector used and its accompanying electronics. Since these factors are
specific to the equipment used in each individual experiment, all of the data
presented in this work has been adjusted for the effects described in this
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section.

Signal Normalization

The intensity of the x-ray source always fluctuates slightly over long time
scales (minutes to hours). If nothing else, the current in the storage ring of
the synchrotron will change slightly over time. More significantly though,
the beamline itself is tuned to produce a highly focused beam of x rays up
to 70 m from the source. Even very minute changes in the alignment of the
beamline optics, such as the thermal expansion or contraction of a crystal in
the monochromator, or even the passage of some heavy machinery through
the experiment hall, may result in small fluctuations in the intensity of the
beam. In any case, to accurately compare data collected at different times
during the experiment, the relative intensity of the incident x-ray beam must
be known. This can be done with a monitor detector, which is usually an
ion chamber placed after the slits defining the incoming x-ray beam. The
measured intensities are normalized to the monitor, and hence the incident
beam intensity, by dividing the scattered intensity by the monitor value.

Use of Filters

Any detector used will have a limited dynamic range in which its response
is linear or quasi-linear. Indeed, in some cases, prolonged exposure of a
detector to an overly intense x-ray beam can cause damage to it. Since the
scattered intensities from 2D diffraction features may vary by multiple orders
of magnitude (for example, see Fig. 2.11), it is often necessary to adjust the
incident x-ray intensity by a known factor. This can be accomplished by the
insertion of one or more thin foils (filters) into the path of the incoming x-
ray beam. If the intensity along a diffraction rod is collected in a single scan
(see Sec. 3.6.2), different filters may be needed for different portions of the
scan to keep the signal strength in the optimal range. In such cases, special
homegrown scanning scripts were used in this research that monitored the
intensity of the scattered x-ray beam and adjusted the number and type of
filters used to keep the measured signal within the optimal dynamic range
of the detector. Note that as long as the monitor detector described above
is downstream of the filters in the incident beam, the normalization of the
signal to the monitor value should automatically account for the relative
changes in the incident intensity, provided that any nonlinearities in the
response of the monitor and detector are corrected for as described below.
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Figure 3.1: Example of the dead time effect for a scintillation detector
as measured at Sector 33ID-E. At higher count rates, the detector begins
to miss counts as it approaches saturation. This effect can be partially
corrected for analytically if the time constant of the detector and counting
electronics is measured. The solid curve is a fit using Eq. (3.1).

Dead Time

Any detector which produces pulses which are directly counted, such
as the scintillation detector of Sec. 3.3.1 (but not the ion chamber or PIN
diode, see below) will have a characteristic response time. If two events
are registered by the detector within this time period, they will not be
resolved as distinct pulses. For this reason, this response time is referred
to at the dead time of the detector. Actually, the dead time constant is
determined by the combined system of the detector and its accompanying
counting electronics. For slower count rates, the detection events will be
amply spaced apart from each other and the dead time will have little effect
on the measured intensity; however, as the count rate increases, more and
more pulses will be missed due to the detector’s dead time until eventually
the detector reaches its saturation point. In any case, the dead time effect
is responsible for a certain degree of nonlinearity in the response of a pulse
generating detector such as a scintillation detector.

It can be shown that for small deviations from linearity, the count rate
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measured by a pulse-based detector is [77]

Rm =
Rt

1 + Rtτ
(3.1)

where Rt is the true count rate and τ is the dead time constant for the
system. Inverting this equation yields

Rt =
Rm

1−Rmτ
(3.2)

for the true count rate in terms of the measured count rate. The dead time
constant of the system can be determined empirically by measuring a refer-
ence intensity over a wide dynamic range for the detector. This can be done
in practice by using a set of filters with known transmission rates. Multiple
data points in the dynamic range of the detector can then be obtained by
simply going through the series of filters and measuring how the count rate
changes, as demonstrated in Fig. 3.1. The reference count rate can be found
from the linearity of the lower end of the range and the dead time constant
can be found by a one-parameter fit using Eq. (3.1). In this case (for a
scintillation detector at Sector 33ID-E), the dead time constant was found
to be 0.57 µs. In principle, if any component of the system is changed —
the detector, the counting electronics, the amplifier, etc. — then the time
constant of the system will change. In this research, the dead time constant
was consistently found to be between 0.5–1.0 µs.

To minimize the effect of the dead time correction, count rates were
generally kept below 150 000 c/s so that the detector response was as linear
as possible. Nonetheless, this effect was corrected for using Eq. (3.2) in all
the experimental data collected with a scintillation detector.

Dark Count

In the cases of the ion chamber and PIN diode, pulses directly from the
detector are not registered by the counting electronics. Rather, the detectors
themselves produce a current that is amplified and converted to a voltage.
The voltage level is run through a voltage-to-frequency converter which is
then fed to the counting electronics. Thus, as long as the current produced
by the detector is proportional to the incident intensity, the response will be
linear and no dead time correction is necessary. That being said, since the
ionization currents produced are generally quite small, the initial current
amplifier usually must have a high gain (∼106 V/A). As a result, small
amounts of electrical noise and leakage current can result in a finite count
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Figure 3.2: An aerial view of the APS showing the approximate location
of the UNICAT beamlines.

rate being registered even when the ionization current itself is zero. This
count rate is referred to as the dark count since it is present even when the
x-ray source is turned off. The dark count can be minimized by adjusting
the offset level of the current amplifier. However, depending on the dynamic
range of the detector that is used (which may be quite large if the detector
is a monitor that sits after a set of filters, see Page 53), the dark count may
still need to be subtracted from the signal. In general, the dark count rate
drifts slowly over long time periods (hours to days), and as such should be
measured on a regular basis.

3.4 Experimental Setup

3.4.1 The UNICAT Beamline Sector 33ID at the APS

All of the experimental data was collected at the Advanced Photon Source
(APS), Argonne National Laboratory, outside of Chicago, IL. The APS is a
7 GeV electron storage ring specifically designed for the production of syn-
chrotron radiation. X rays are produced either using the bending magnets
that keep the electrons moving in a circular orbit, or by insertion devices
such as an undulator, which are tailored for the production of highly fo-
cused intense x-ray beams. The experimental data presented in this work
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Figure 3.3: Diagram of an insertion device (wiggler or undulator). Mag-
netic fields of alternating polarities are placed together in a regular fashion,
causing the electrons to weave back and forth through the device. In this
manner the radiation from each oscillation in the path of the electrons adds
up (incoherently in the case of a wiggler and coherently in the case of an
undulator) to produce a more intense x-ray beam.

was obtained at Sector 33ID, operated by the UNICAT (University, National
Laboratory, Industry Collaborative Access Team) collaboration. Below is a
brief overview of this beamline and its respective components.

Undulator

The basic source of synchrotron radiation is the centripetal acceleration
of x rays in a curved path [78]. Hence, synchrotron radiation can be easily
produced simply by shooting an electron through a magnetic field. Indeed,
this is the basis for bending magnet sources. However, a much more intense
source of x rays can be constructed by putting a series of magnetic fields
oriented in opposite directions together, as illustrated in Fig. 3.3. Such a
device is commonly referred to as a wiggler. The intensity of a wiggler source
is equal to 2N times the intensity of a single bending magnet, where N is the
number of periods in the wiggler. An undulator is very similar to a wiggler
except that the spacing between the magnets and their field strength (varied
by adjusting the separation between the magnets) are tuned such that the
radiation emitted from the electrons in one oscillation of its path is in phase
with the radiation emitted from the other oscillations. The coherent sum of
the amplitudes of the radiated waves from each oscillation is only valid for
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Figure 3.4: A picture of an undulator while being serviced at the APS.

a very narrow band of energies (and their harmonics). Thus, the undulator
effectively compresses the energy spectrum of the emitted radiation so that
it is concentrated at certain energies. A picture of an actual undulator at
the APS is shown in Fig. 3.4. Sector 33ID uses APS Undulator A as its
insertion device, which provides high brilliance x-rays over the energy range
4–40 keV.

Monochromator

After an initial white-beam‡ slit that is used to select the central cone
of undulator radiation, the energy of the x rays is selected using a double-
crystal Si(111) monochromator located approximately 45 m from the source,
the first crystal of which is cooled by liquid nitrogen to disperse the large heat
load of the intense white beam. Such a monochromator works by adjusting
the angle of incidence of the incoming x rays with the crystal such that it is
a Bragg angle for the wavelength desired, as shown in Fig. 3.5. The crystal
is of extremely high quality (commonly referred to as “perfect”) and as such
has a very sharp Bragg peak. Since Bragg’s Law [Eq. (2.3)] involves both
the angle θ and the wavelength λ, only x rays of the λ corresponding to the
Bragg angle will be diffracted from the crystal, yielding a beam of x rays that
is essentially monochromatic (although it also contains higher harmonics, see

‡Even though the radiation from an undulator is quasi-monochromatic, the x-ray beam
is still called “white” if it has not yet passed through a monochromator.
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Figure 3.5: Schematic of a double-crystal monochromator. The reflection
angle of each of the two crystals is adjusted such that they are equal to a
Bragg angle θ. The result is that only a single wavelength (and its higher
harmonics) is diffracted and passes through the monochromator. The sec-
ond crystal retains the initial trajectory of the beam regardless of the angle
θ chosen.

below). The second crystal of the monochromator is also tuned to the same
Bragg angle and translated as needed so that the beam continues along the
same trajectory regardless of the monochromator setting.

Harmonic rejection and focusing

The Bragg angle used in the monochromator to select the x ray wave-
length λ is also valid for the higher harmonics in the beam (λ/2, λ/3, etc.)
that will be present in the radiation from the undulator. As such, the beam
will still not be entirely monochromatic after going through the monochro-
mator. To provide harmonic rejection, the UNICAT beamline includes a set
of two mirrors (arranged in the same configuration as the two monochroma-
tor crystals, Fig. 3.5, except with a much smaller reflection angle, ∼0.1◦).
Such mirrors are designed to reflect x rays specularly from their surface with
almost unit reflectivity by keeping the incident angle of the x-ray beam below
the angle of total external reflection. Since this angle is energy dependent —
it will be much smaller for the higher harmonics — the lowest harmonic of
the beam (λ, the wavelength wanted) can be selectively reflected by choos-
ing the reflection angle appropriately. In addition, at Sector 33ID, the first
mirror is dynamically bent to allow vertical collimation or focusing of the
beam. Horizontal (sagittal) focusing or collimation is done by bending the
second crystal of the monochromator.

3.4.2 The SXRD Station at Sector 33ID

The actual instrument used to collect the x-ray diffraction data was the
surface x-ray diffraction station in Hutch E at Sector 33ID. This end station
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Figure 3.6: The surface x-ray diffraction station at Sector 33ID-E. The UHV
chamber was specially designed and built to be integrated with a six-circle diffrac-
tometer. Various components of the setup are marked.

is shown in Fig. 3.6 with some of its components marked. It consists of a
six-circle diffractometer coupled with an UHV chamber including a standard
complement of surface analysis tools. The center of the chamber is located
approximately 70 m from the undulator source and 23 m from the last
focusing element (the first mirror) in the beamline. The x-ray beam size is
defined by a pair of slits at the front of the hutch (back wall in Fig. 3.6),
with typical cross-sections being about 0.5× 0.5 mm2. A nitrogen-filled ion
chamber placed immediately after these slits was used as the monitor by
which the scattered intensity was normalized (see Sec. 3.3.2). A removable
beam pipe filled with helium gas extends from the exit of this ion chamber
to within 0.3 m of the UHV chamber to reduce air scattering.
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UHV chamber and diffractometer

The UHV chamber is equipped with an ion pump and TSP and has
a base pressure of approximately 6 × 10−11 torr. Under typical operating
conditions pressure inside the chamber was approximately 1.5× 10−10 torr.
The system is also equipped with a reflection high-energy electron diffrac-
tion (RHEED) gun, which is used to examine the initial quality of sample
surfaces or to observe different surface reconstructions while preparing the
sample. Two different evaporation sources are available, mounted approx-
imately 30◦ below the horizontal on the end (right side of Fig. 3.6) of the
UHV chamber — a four-pocket electron-beam evaporation source and a sin-
gle Knudsen cell thermal evaporator (see Sec. 3.5.1). Evaporation rates can
be calibrated using a water-cooled quartz crystal thickness monitor, which
can be extended from a side arm of the chamber to sit in place of the sample.

The sample is mounted vertically behind a large semi-cylindrical beryl-
lium window that allows the incident and exiting x-ray beams to pass into
and out of the UHV chamber. Two of the diffractometer angles are used
to orient the surface normal of the sample such that it is horizontal and
coincident with the φ axis of the diffractometer. These two angles are then
left fixed for the rest of the experiment while the φ axis can be used to
rotate the sample about its normal. This orientation is accomplished by
reflecting a laser beam from the sample surface through a large window on
the end (right side of Fig. 3.6) of the UHV chamber and rotating φ. When
the reflected beam remains stationary through a full rotation, the sample
normal is aligned with the φ axis of rotation. The remaining three degrees
of freedom of the diffractometer are a rotation of the entire table about a
vertical axis to select the incident angle α and two perpendicular rotation
axes for the detector: one to select the exiting angle β and an additional
horizontal rotation axis coincident with the φ axis for measurements of large
in-plane components of momentum transfer (the δ axis). This mode of op-
eration of the diffractometer is called the z-axis mode and its configuration
is described in detail elsewhere [68].

Since all of the data is this research consists of reflectivity measurements,
the δ angle was nominally set to zero and the scattering plane is then hor-
izontal. In Fig. 3.6, the δ axis is set to a large (∼45◦) angle so it does not
obscure the view. The detector is mounted behind a pair of slits located ap-
proximately 600 mm from the center of rotation of the diffractometer (the
intersection of all its various rotation axes), to which the sample surface is
oriented using survey equipment. Speed-reducing gear boxes are used on all
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Figure 3.7: The sample mount with various components labelled.

of the stepping motors of the diffractometer to provide an angular resolution
of approximately 2 arcseconds (0.0005◦).

Sample mount

The sample mounting arm is attached to the diffractometer and is cou-
pled to the rest of the UHV chamber via a two-stage differentially pumped
rotary seal. The inner seal is pumped down to ∼10−9 torr via a low-volume
ion pump whereas the outer seal is pump down to high vacuum pressures
with a turbo pump. No bursts of pressure are observable during rotation
of the sample degrees of freedom on the diffractometer. The position of the
mounting arm is adjustable via an xyz stage that allows precise positioning
of the sample surface with respect to the diffractometer rotation axes. Cur-
rently, no sample transfer capability is available, so to mount the sample
the chamber must be brought up to atmospheric pressure and the mounting
arm removed.

The actual mount for the sample is shown in Fig. 3.7 with various com-
ponents labelled. The sample is thermally anchored to an open-cycle liquid
nitrogen cryostat built into the end of the sample arm via a sapphire block
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at one end of the sample. Due to sapphire’s good thermal conductivity
at low temperatures, this arrangement allows for cooling of the sample to
base temperatures of ∼100–110 K while keeping the sample electrically iso-
lated from the mounting arm. The temperature of the sample is monitored
by a pair of thermocouples attached to the two tantalum mounting clips.
The sample can be heated either by passing a direct current through the
sample itself or via indirect heating from a tungsten coil positioned behind
the sample. Quoted temperatures are the average of the readings from the
two thermocouples, with errors in the sample temperature ranging from ap-
proximately ±5◦ at base temperature (110 K) up to ±20◦ at the highest
annealing temperatures (300 K) during the experiment. Discrepancies in
the readings of the two thermocouples indicated the presence of a thermal
gradient across the sample; however, due to the small footprint of the beam
— about 0.5 mm parallel to the thermal gradient — compared to the 40 mm
length of the sample, the measured region of the sample can be considered
to be of uniform temperature to within .1◦, with the quoted errors repre-
senting the confidence interval of the absolute temperature.

3.5 Sample Preparation

3.5.1 Molecular Beam Epitaxy

Deposition of elemental Pb on the substrates was done using molecular beam
epitaxy (MBE). The long mean free paths in an UHV environment permit
the existence of well-formed beams of atoms or molecules. MBE is the use
of such beams to deposit atoms on the surface of a sample. The beam it-
self is produced by evaporation or sublimation of the source material from
a crucible heated to high enough temperatures. The crucible itself must
therefore be made from material with a high melting point, low vapor pres-
sure, and little propensity to alloy or react with the evaporant. Common
choices are molybdenum, tungsten or a ceramic such as alumina or pyrolytic
boron nitride (PBN). The crucible is brought to the requisite temperature
either through resistive heating (an effusion or Knudsen cell), or by elec-
tron bombardment of the crucible itself (an e-beam evaporator). Since the
vapor pressure, and hence the rate of evaporation, of the source material
is highly dependent on temperature, care must be taken to ensure that the
temperature of the crucible is uniform and stable. For an effusion cell, this is
accomplished by enclosing the crucible in multiple layers of thermal shield-
ing and using a temperature controller with feedback from a thermocouple
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near the crucible. For an e-beam evaporator, a feedback circuit monitors
the emission current between the filament and crucible, which is propor-
tional to the power dissipated by the crucible and is thus also related to
its temperature, and attempts to keep it constant. In both cases, excess
heat and thermal isolation of the source is maintained by water-cooling of
its encasement.

The “beam” aspect of MBE can be realized by leaving only a small
opening in the end of the crucible, effectively collimating the molecular
beam, which can then be directed at the sample. The uniformity of the
deposited film is dependent on the shape of the crucible, the distance from
the source to the sample, and the position of the sample in the plume of
the beam. In this research, Pb was evaporated from a PBN crucible in a
Knudsen cell held at a temperature of 650 ± 0.1◦C. The uniformity of the
deposit on the sample given the distance from the evaporator (250 mm)
is estimated to be within 1% across the width of the sample. The rate of
deposition was calibrated with a quartz crystal oscillator — as the evaporant
collects on the crystal, its resonance frequency will change slightly, which can
be measured and converted to a thickness given certain physical parameters
of the material.

3.5.2 Sample Pretreatment

The 10×40 mm Si(111) substrates were cut from P-doped commercial wafers
with a nominal resistivity of 1–30 Ω·cm. They were attached to the sample
mount as shown in Fig. 3.7 and degreased using an ultrasonic cleaner while
submerged in a methanol bath. After mounting in the chamber and being
pumped down to UHV pressures, any residual contaminants on the sample
were removed by prolonged (4–24 hours) outgassing at ∼600◦C. The oxide
layer covering the sample surface was then removed by flashing the substrate
to ∼1250◦C for approximately 13 seconds, which reliably results in a high
quality (7×7) reconstruction as verified by examining RHEED patterns and
the in-plane x-ray superstructure peaks from the reconstruction. The surface
was then pretreated by depositing 4.5 Å Pb on it by thermal evaporation,
followed by a 10 minute anneal at ∼415◦C to desorb the excess Pb and
to form the Pb/Si(111)-(

√
3 ×√3)R30◦ phase with an initial coverage of

approximately 1.1 Pb monolayer, which is equivalent to 4
3 monolayer in Si

units. This pretreatment has been shown to result in bulklike termination
of the Si(111) interface [48, 49, 79, 80] upon which smooth Pb films can be
grown at low temperatures [41, 81]. In subsequent chapters, this initial Pb
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Figure 3.8: The raw specular reflectivity rod for the initial Si(111)-(7 ×
7) surface (black dots), the pretreated Pb/Si(111)-(

√
3 ×√3)R30◦ surface

(blue squares), and a 6 AL Pb/Si(111) film grown on the Pb/Si(111)-(
√

3×√
3)R30◦ interface (red triangles).

wetting layer is included as part of the total thickness or coverage of a film.
Quality of the initial Pb/Si(111)-(

√
3×√3)R30◦ surface was monitored

by examination of the strength, width and exact location of the x-ray super-
structure peaks due to the surface reconstruction [82] as well as with scans
of the specular reflectivity rod. Examples of the reflectivity for a sample in
various stages of treatment are shown in Fig. 3.8. The abscissa in the graph
is the momentum transfer in Si(111) reciprocal lattice units, Eq. (2.32). The
data shown are the raw reflectivity data as collected using the ridge scan
method (see Sec. 3.6) — no background subtraction has been done and the
geometric corrections discussed in Sec. 2.5.4 have not been applied. The only
modifications that have been made to the data are the detector corrections
discussed in Sec. 3.3.2. The reflectivity rod of the Si(111)-(7× 7) surface is
shown with black circular dots. The shoulders of the Si(111) and Si(333)
Bragg peaks are clearly seen, as well as the pseudo-forbidden Si(222) peak
discussed in Sec. 2.5.1. The relative intensity scale is the same for each set
of data. The flat portion of the curve between l ≈ 4 and l ≈ 8 is due to the
large background signal at higher momentum transfers.

After the pretreatment described above, the intensity between the Bragg
peaks is increased significantly (blue squares), consistent with a single layer
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of Pb atoms on the surface of the sample. The lack of any other peaks in the
spectrum indicates that the surface is free of any buildup of Pb crystallites
or islands. After deposition of approximately 5 AL of additional Pb (thus
forming a film with a total thickness of 6 AL), the appearance of the Pb(111)
and Pb(222) Bragg peaks is evident at l ≈ 3.3 and l ≈ 6.6, respectively, with
four interference fringes in-between. Such a profile is similar to the N -slit
interference function shown in Fig. 2.9. The Pb Bragg peaks indicate that
the film has grown epitaxially with a (111) orientation. The deep minima
between the interference fringes, which are shown actually going below the
level of the Pb/Si(111)-(

√
3×√3)R30◦ curve in places, are due to destructive

interference from the film overlayers and indicate a high degree of uniformity
in the thickness of the Pb film. Away from the Si Bragg peaks, the scattered
intensity along the reflectivity rod of the 6 AL film is approximately two
orders of magnitude greater than that of the bare substrate. This effect
is due to the much larger electron density of Pb (Z = 82) compared to Si
(Z = 14). Since the measured intensity is roughly proportional to Z2, it will
be dominated by scattering from the Pb atoms on the surface.

3.6 Collection of X-Ray Reflectivity Data

3.6.1 The Rocking Curve Method

As discussed in Sec. 2.5.3, the 2D nature of thin films results in rod-like
features in reciprocal space. Although in principle these rods are one-
dimensional, in reality they have a finite width due to the non-ideal nature of
the sample (surface roughness, sample mosaicity, etc.). To compare experi-
mental measurements with the intensity calculated by a kinematical model,
the intensity integrated over the rod’s transverse extent must be measured.
In addition, the background intensity due to inelastic (Compton) scattering
and TDS must be accounted for. Both of these requirements can be met by
measuring the transverse rod profile at each point along the rod. In the case
of the specular rod, such a scan is termed a rocking curve since it consists
in a rotation of the sample about the y axis, defined as the axis in the plane
of the surface and normal to the scattering plane (the plane formed by the
vectors ki and kf ) while leaving the detector position fixed. In this manner,
a cross-sectional profile of the rod is obtained as described below.

In a rocking curve scan, the momentum transfer vector is swept across
the rod, measuring the intensity at positions slightly offset from the specular
condition. The scattering geometry for such off-specular measurements is
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Figure 3.9: A diagram showing the scattering geometry slightly offset
from the specular condition. Since α 6= β, the momentum transfer has
an in-plane component whereas the out-of-plane component remains nearly
the same. In a rocking curve, the sample is rotated about the y axis (into
the page).

shown in Fig. 3.9. In this geometry, the angle the incident x-ray beam makes
with the sample surface, α, is close but not equal to the exiting angle β. If
the sample normal is in the scattering plane, as it is with a rocking curve,
then the scattering angle is 2θ = α + β and the momentum transfer vector
has the components

qx = k(cosβ − cosα) (3.3a)

qz = k(sinα + sinβ). (3.3b)

Note that from these equations, the magnitude of q is

q =
√

q2
x + q2

z (3.4)

= k
√

2 + 2 (sinα sinβ − cosα cosβ) (3.5)

= 2k sin
(

α + β

2

)
, (3.6)

which is consistent with Eq. (2.14).
For measurements close to the specular condition, it is convenient to

describe the components of q in terms of the offset angle ω = (α−β)/2, the
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Figure 3.10: (a) comparison of the data for the reflectivity rod measured with the
rocking curve method (solid black curve with points) and the ridge scan method
(dotted red curve). The background found with the ridge scan method is shown
as a dotted blue curve. (b)–(d) Rocking curves at l = 1.595, 6.62, and 7.775,
respectively. The angular range integrated by the ridge scan method is shown with
vertical dashed green lines. The red curves are fits to the rocking curve data with
an asymmetric Voigt line shape with a linear background (blue dotted curves).

angle between q and the surface normal. From Fig. 3.9 is can be seen that

qx = 2k sin
(

2θ

2

)
sinω (3.7a)

qz = 2k sin
(

2θ

2

)
cosω. (3.7b)

If the offset angle is small, qz ∼ q and qx ∼ qω. Thus, a transverse scan of
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Figure 3.11: Maps of a Pb/Si(111) reflectivity rod in (a) angular space and
(b) reciprocal space. The color scale represents the logarithm of the background-
subtracted intensity with about five orders of magnitude represented. The white
curves represent contours of constant qx in (a) and constant ω in (b), with
the dashed contours indicating the range of the x axis in the opposing image
[qx = ±0.02 r.l.u. in (a) and ω = ±1◦ in (b)]. The blank areas in the bottom
corners are regions inaccessible to the diffractometer (α < 0 or β < 0). The four
slanted red lines show the cross-section of the rod measured by a 4 mm-wide detec-
tor slit, as used in the ridge scans whereas the blue lines with dashed arrows show
the effect of performing a rocking curve scan with a narrower (1 mm) slit setting.

the reflectivity rod for a given qz can be accomplished by scanning the offset
angle ω at the proper 2θ. Since this procedure does not change the scattering
angle, the detector remains fixed in such a scan while the sample is “rocked”
about the specular condition. From the transverse profile, the rod intensity
can be separated from the background and integrated. The diffraction rod
resulting from a set of such rocking curves is shown as a solid black curve in
Fig. 3.10(a) for a Pb/Si(111) film with a nominal thickness of 13 AL. The
abscissa is this plot is l, which is qz measured in Si(111) reciprocal lattice
units, Eq. (2.32). The data points indicate l values at which rocking curves
were performed, with selected examples shown in Figs. 3.10(b)–(d).

It should be noted that although the perpendicular momentum transfer
is directly related to 2θ (since ω is generally very small), the transverse
component is strongly coupled to both ω and 2θ. Specifically, for small
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scattering angles qx ∝ ω 2θ. This fact results in a difference in the topology
of angular (ω-2θ) and reciprocal (qx-qz) space. Figure 3.11(a) shows the
results of the rocking curves used to determine the data in Fig. 3.10. Each
rocking curve is an ω scan for a specific value of 2θ and thus corresponds to a
single horizontal row in the image. In this manner, a map of the diffraction
rod in angular space can be created. Since the width of the rod varies
along its length, rocking curves at different 2θ values require different step
sizes. To create an evenly spaced grid of points for the image, each rocking
curve was fit to an asymmetric Voigt curve (a convolution of a Gaussian
and Lorentzian). To illustrate the different topology of angular space with
respect to reciprocal space, the white lines in the image show contours of
constant qx, calculated using Eq. (3.7a). As can be seen, the width of the rod
appears to follow the qx contours, which is especially noticeable as 2θ → 0,
where the rod appears to flare out. The reason for this effect is that the
diffraction rod is really a feature in reciprocal space, and as such will follow
its topology. This fact is explicitly demonstrated in Fig. 3.11(b), which
shows the same data as Fig. 3.11(a) but transformed into reciprocal space.
The white lines in this case show contours of constant ω. In reciprocal space,
the flaring-out effect is not present and the rod width is nearly uniform
as a function of l.§ Since the rod is measured in angular space, it will
appear to be broader at smaller scattering angles. Since scattering at α <

0 or β < 0 cannot be measured (blank areas in the bottom corners of
Fig. 3.11), eventually the width of the rod in angular space is so large that
the background cannot be accurately determined. This widening of the rod
in angular space also has important ramifications for the ridge scan method
discussed in Sec. 3.6.2.

It is important to understand exactly what portion of reciprocal space
is being measured by a rocking curve scan. The detector has a finite active
area defined by a pair of slits. This active area itself effectively integrates
the intensity over a 2D surface in reciprocal space. During the rocking curve
scan, this surface is swept through reciprocal space to integrate over a 3D
volume. The dimensions of this integration volume will determine the reso-
lution of the rod measurement. This effect is illustrated in Fig. 3.12, which
shows a diagram representing the scattering geometry projected onto the
scattering (xz) plane. For a given incident angle α, a range dβ of exiting
beams will be collected by the detector, corresponding to the angular ac-

§A slight broadening is evident at high values of l; however, this effect is due to the
convolution of the signal with the finite angular width of the slit used to measure the
rocking curves and is not due to actual broadening of the diffraction rod itself.
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Figure 3.12: A diagram showing the range of momentum transfer collected
by the detector slits. For different β values, the orientation and length of
the q vector is different, which collects a slightly diagonal slice of reciprocal
space that has a finite width in qz and effectively integrates over a range of
ω (or qx).

ceptance of the slits. Each of these beams corresponds to a slightly different
q vector. The orientation of each q vector will be slightly offset from the
surface normal (z axis) by an amount dω = −dβ/2, which from Eq. (3.3a)
corresponds to a variation

dqx = −k dβ sinβ (3.8)

in reciprocal space. Similarly, from Eq. (3.3b) the range of qz values which
are collected by the detector throughout the scan is

dqz = k dβ cosβ. (3.9)

The surface in reciprocal space over which the slits integrate is thus approxi-
mately a rectangle that extends in the y direction (perpendicular to the page
in Fig. 3.12) due to the width of the slits normal to the scattering plane, and
whose other edge is a slanted line segment in the xz plane. The values of
dqx and dqz indicate the reciprocal space lengths between the endpoints of
this line segment. Examples of the projection of this 2D rectangular surface
onto the scattering plane (i.e., the line segment profile of the rectangle) are
shown in Fig. 3.11 as red and blue lines. A rocking curve scan is therefore
equivalent to sweeping one of these rectangles across the diffraction rod in
the x direction, as shown with the blue dashed arrows. Such a scan will
integrate a slice of the rod that has a thickness of dqz. Since dqz ∝ cosβ,
the thickness of this rod slice will vary as we move along the rod. This is
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the origin of the rod interception correction factor discussed in Sec. 2.5.4.
In the case of 3D crystallography, where rocking curves are commonly

used to measure the integrated intensities of Bragg peaks, the detector slits
are opened relatively wide for the scan to maximize the integration volume.
In that case, the Bragg peak is nominally a zero-dimensional feature (point)
in reciprocal space. However, in surface diffraction, the features of interest
are quasi-1D objects (rods), along which the intensity as a function of qz is
desired. In addition, the background surrounding these rods can be signifi-
cant and must be taken into account. In this case, the preferred integration
volume is a 2D cross-sectional slice of the rod that retains as much resolution
in qz as possible. As a result, the detector slits are generally narrowed to
minimize dβ and hence dqz.

To summarize, the rocking curve method measures a cross-sectional pro-
file of the diffraction rod for an approximately constant qz value. From this
profile, the background can be found and the rod intensity integrated. This
method provides accurate rod intensities for a wide range of qz values. How-
ever, since an individual scan must be carried out for each qz point along
the rod, it requires a great deal of time both to collect the data and in
its analysis. Since a high-demand synchrotron is generally used to do the
experiment, this limitation may be significant.

3.6.2 The Ridge Scan Method

As mentioned in the last section, the acceptance area of the detector itself
integrates over a 2D surface in reciprocal space. If the diffraction rod is
sufficiently sharp in the transverse directions, a 2D cross-sectional slice of the
rod can be measured without rocking the sample at all by using sufficiently
wide detector slit settings. In this manner, the integrated intensity of a point
on the rod is obtained directly with a single setting of the diffractometer.
This type of measurement is illustrated in Fig. 3.11 with slanted red lines.
This cross-section is truly a 2D slice of the rod, unlike the 3D volume that
is integrated with a rocking curve. In that case, the (narrower) slits were
scanned across the diffraction rod, as shown with the blue lines and arrows.
In the ridge scan method, a wider slit setting is used (hence the longer line
in the figure) and the measurement is taken directly at each point along the
rod. Since the rod is integrated over a 2D surface instead of a 3D volume,
the rod interception factor described in Sec. 2.5.4 is not needed.

The integrated intensity of the rod as a function of qz can thus be ob-
tained by scanning α and β simultaneously while keeping α = β (ω = 0).
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This type of scan is commonly referred to as a θ-2θ scan, since both the
scattering angle and the incident angle (which is equal to half the scattering
angle for the specular rod) are varied during the scan. This type of scan is
equivalent to sweeping the slit profile shown at the bottom of Fig. 3.11(a)
in a straight line up the middle of the map. The background level for each
point along the rod can be obtained by performing a similar type of scan
with an offset between α and β; i.e., with ω 6= 0. In this work, the back-
ground for each ridge scan was obtained by taking the average of two scans,
one with ω = 1◦ and another with ω = −1◦. Such background scans can be
visualized in Fig. 3.11(a) as sweeping up straight vertical lines in angular
space at the edges of the map. The results of using the ridge scan method
to measure the Pb/Si(111) specular rod in Fig. 3.11 is shown in Fig. 3.10
as a red dotted curve. In both cases, the curves represent the background
subtracted integrated intensity of the specular rod, with the experimental
corrections described in Secs. 2.5.4 and 3.3.2 applied. Since the two meth-
ods measure intensities on incompatible scales (the rocking curves integrate
over a 3D volume of reciprocal space whereas the ridge scan integrates over
a 2D surface), the ridge scan curve was multiplied by a scale factor to show
the two results on the same scale. The average of the two background scans
that were subtracted from the ridge scan is also shown in the figure as a
light dotted blue curve.

The results from the two methods are essentially equivalent for l > 2.5.
However, for the lower portion of the rod, the ridge scan method consistently
measures a lower intensity than the rocking curve method. The reason for
this discrepancy is that the size of the 2D surface used to integrate the
transverse profile of the diffraction rod is defined by the angular acceptance
of the detector slits. It is therefore a constant size in angular space. That
is, the ridge scan samples a vertical swath of constant width in Fig. 3.11(a).
However, as discussed in the last section, the diffraction rod appears to
broaden considerably in angular space as l → 0, following the contours of
constant qx. At lower momentum transfers, the 2D integration surface is
no longer wide enough in reciprocal space to sample the entire rod cross-
section. This effect is illustrated in Figs. 3.10(b)–(d), where the angular
range sampled by the slits used to obtain the ridge scan data is shown with
vertical dashed green lines. In Figs. 3.10(c) and (d), the range collected by
the slits clearly integrates over the full rod width whereas in Fig. 3.10(b),
part of the rod intensity is not collected (note the different scale for ω).
Therefore, the ridge scan method is only effective for obtaining integrated
rod intensities for larger momentum transfers (in our case, for l > 2.5).
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Since this study focuses on the extended reflectivity, this limitation is not
overly restrictive.

Even though the ridge scan method is limited in the range of momentum
transfer that it can measure, it also possesses certain advantages over the
rocking curve method. First, since the diffraction rod is integrated over a 2D
surface, the ridge scan method provides exceptionally high-resolution data
in qz. In contrast, the rocking curve method always integrates a rod slice of
finite thickness which limits its resolution in qz. More significantly though,
the ridge scan method requires only a fraction of the amount of time to
acquire a full set of extended reflectivity data compared to the rocking curve
method. With the ridge scan method, the background-subtracted integrated
intensity of the full rod can be measured with just three scans (one for ω = 0
for the specular intensity and two background scans at ω = ±1◦), whereas
a separate scan must be done for each point along the rod with the rocking
curve method. For example, the data in Fig. 3.10 represents the results
of 280 individual rocking curves, each of which needed to be individually
analyzed to determine the background and to remove any spurious data
points. Measuring the full diffraction rod using the rocking curve method
may take 10–20 hours, depending on the spacing desired between the points
along the rod. In contrast, measuring the diffraction rod using the ridge
scan method only takes about 20–40 minutes. For experiments such as those
conducted in Chapters 5 and 6, where the specular rod of the same sample
may need to be measured dozens of times (at different temperatures or
thicknesses), the ridge scan method is a necessity given the time constraints
of a synchrotron facility.

The ridge scan method provides a technique for measuring the upper
portion of the reflectivity rod (the extended reflectivity) at high resolution
and in a short amount of time. For lower momentum transfers, the width of
the diffraction rod must be measured to ensure that the detector slits in the
ridge scan collect the full integrated intensity of the rod. In practice, this
can be verified by doing sample rocking curves to measure the transverse
rod profile. The angular width of the slits needed to integrate the entire rod
width is then approximately twice the full width of the peak in the rocking
curve (dβ ≈ 2dω). In our case, it was found that with the slit setting used,
the full rod intensity was collected for l > 2.5. For this reason, only data
for these momentum transfers were used in the experimental analyses.
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3.6.3 Error Analysis

Since the diffraction data were collected with a scintillation detector, which
produces pulses that are counted, the statistical distribution of the raw in-
tensity data should follow a Poisson distribution with a standard error of√

N0 where N0 is the number of pulses counted before background sub-
traction and signal normalization. The fractional error in this case is thus
1/
√

N0. Since typical count rates were on the order of 104–105 c/s, the
fractional errors due to statistical deviations were only about 0.3–1.0%. To
account for a certain degree of systematic error in the measurements (sam-
ple misalignments, etc.), the statistical errors were combined quadratically
with a 5% systematic error. Due to the high count rates, generally the bulk
of the standard deviations for each data point are due to systematic errors.

In the process of doing the least-squares fits to the experimental data, a
reduced χ2 measure of the fit quality was used:

χ2 =
1

N −M
N∑

i=1

[yi − f(xi)]
2

σ2
i

(3.10)

where N is the number of points in the data set, M is the number of free
parameters in the model (thus, N −M is the number of degrees of freedom),
yi = N0/Nm is the normalized count rate for data point i (Nm is the monitor
count discussed in Sec. 3.3.2), xi is its corresponding abscissa value, f(x)
is the model function, and σi is the standard error for data point i. As
described above, in our case the standard error is

σ2 =

(√
N0

)2 + (0.05N0)
2

N2
m

, (3.11)

so

σ2
i =

yi

Nm
+ 0.025 y2

i . (3.12)

Thus, when χ2 ≈ 1 the model function describes the data to within the
experimental error of the measurements. Due to the multitude of different
factors that influence the form of a reflectivity curve, typical χ2 values for
the best fits to the experimental data in Chapters 5 and 6 were generally in
the range χ2 = 5–10.
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4.1 Introduction

In an attempt to capture the essential physics of an ultrathin metal film, it
is reasonable to approximate the system as a free-electron gas confined to a
one-dimensional quantum well. This chapter develops a set of such models
to describe some of the various thickness-dependent effects that arise due
to quantum confinement of a metal film’s itinerant electrons by its physical
boundaries (QSE) [83, 84]. The free-electron assumption in itself limits the
direct applicability of the unmodified models for the quantitative analysis
of actual experiments. However, as will be seen, the addition of certain phe-
nomenological factors can be done to mimic some of the physical realities
of the system. The modified models are found to provide an adequate de-
scription of the actual films studied, as long as they are interpreted within
the proper context.

Adhering to the theme of simplicity, most of the models presented are
based upon a quantum well with infinite bounding potentials. Such a sim-
plification enables us to derive analytic formulas for the wave functions of
the confined electrons and the surface energy. The availability of an analytic
solution is conducive to incorporating the results of the model calculation
into a fitting algorithm with adjustable parameters that can be used to in-
terpret experimental data. Since such a routine may need to recalculate
the model results thousands or even millions of times before arriving at an
acceptable fit to the data, models that rely upon first-principles calculations
or that are purely numerical are not well-suited for incorporation into such
algorithms due to their computationally intensive nature.

That being said, the finite quantum well model is explored at the end of
the chapter for the sake of comparison. Conceptually it lacks the simplicity
of the infinite well model. However, the finite well model offers an alternative
perspective within the free-electron framework. In the end, the results of the
finite well model are very similar to those found using the modified infinite
well model and as such offer a certain degree of validation that they are
accurate and physically reasonable.
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Before the specific models are presented, a certain theoretical base is
developed. First, in Sec. 4.2 the effects of quantum confinement on the
charge density inside an infinite well are described. Second, due to the
discrete quantum well states that arise, the Fermi level in a film is not
necessarily equal to that in the bulk material. This effect and different
viewpoints on how to approach it are discussed in Sec. 4.3, where it is found
that the charge density oscillations of Sec. 4.2 provide valuable insight as to
the physical phenomena involved.

In the last two sections of the chapter, two different physical effects are
discussed in detail. The first is related to the Friedel-like oscillations in
the electronic charge density that arise at the film boundaries. Since the
ionic cores in the film’s crystalline lattice have a net positive charge, it is
reasonable to expect them to respond to these electron density oscillations,
causing lattice distortions with a corresponding periodicity. Two similar
models are developed to describe these lattice distortions, which are used
in Chapter 5 to help explain the atomic-layer structure of thin Pb/Si(111)
films.

The second effect is oscillations in the surface energy as a function of
thickness. These oscillations will be studied experimentally in Chapter 6,
where it will be found that films annealed to a state of quasi-equilibrium have
a wide distribution of thicknesses. The distributions are not smooth, though,
indicating that some thicknesses are more stable than others, corresponding
to variations in the surface energy of the film. In Sec. 4.5, a model for this
effect within the free-electron context is presented, the functional results of
which are used in Chapter 6 to aid in the data analysis.

4.2 Charge Density

In the infinite well model, the free-electron wave function is subject to the
boundary conditions

Ψ → 0 at z = 0, D (4.1)

where D is the width of the quantum well. The Fermi sphere of allowed
electronic states is correspondingly reduced to a series of subbands, as shown
in Fig. 4.1, each having a wave function

Ψk(r) =

√
2
V

eikxx+ikyy sin(kzz) (4.2)
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Figure 4.1: Due to confinement of the itinerant electrons in the film to
a quantum well, the Fermi sphere of allowed states is reduced to a set of
subbands along the direction of confinement. The quantum number of the
highest occupied subband is denoted with n0.

where V is the volume of the system, the index kz can take on the values

kz =
πn

D
n = 1, 2, 3, . . . , n0, (4.3)

and the quantum number of the highest occupied subband is

n0 = int
(

kF D

π

)
. (4.4)

Thus, the wave functions for the electrons in each subband are that of a free
particle in the xy plane (the plane of the film) and a standing wave in the
z direction. The electronic charge density at a point in a free-electron gas
is in general found by integrating over the Fermi sphere,

ρe(r) =
2V

8π3

∫

|k|<kF

(−e)
∣∣Ψk(r)

∣∣2d3k, (4.5)

where e is the magnitude of the charge of an electron and kF is the Fermi
wave vector. However, in this case,

∣∣Ψk(r)
∣∣2 = 2

V sin2(kzz), which is only
a function of z, as required by the translational symmetry of the system in
the xy plane. In addition, the Fermi sphere is no longer uniformly occupied,
but is divided up into a series of discrete Fermi disks. Thus, the electronic
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charge density at a point 0 ≤ z ≤ D in the quantum well is

ρe(z) = − e

2π3

∫ kF

0
dkz π

(
k2

F − k2
z

)
sin2(kzz)

n0∑

n=1

2π

D
δ
(
kz − πn

D

)
(4.6)

= − e

πD

n0∑

n=1

[
k2

F −
(πn

D

)2
]

1
2

[
1− cos

(
2πnz

D

)]
. (4.7)

The summation can be divided up into a portion which is constant with
respect to z and an oscillatory component:

ρe(z) = − e

2πD

[
CD −

(
k2

F +
1
4

∂2

∂z2

)
SD

(
2πz

D

)]
(4.8)

where CD is given by

CD =
n0∑

n=1

[
k2

F −
(πn

D

)2
]

(4.9)

= n0k
2
F −

( π

D

)2 1
6
n0(n0 + 1)(2n0 + 1), (4.10)

and SD is the dimensionless geometric sum

SD(x) =
n0∑

n=1

cos(nx) (4.11)

=
1
2

sin(n0x) cot
(x

2

)
− sin2

(n0x

2

)
. (4.12)

The subscripts on SD and CD are a reminder that both of these quantities
will change with the size of the quantum well. The oscillatory behavior of ρe

is thus captured in SD, which gives rise to a n0-slit interference pattern with
a characteristic wavelength of D/n0 ≈ π/kF = λF /2 (one half of the Fermi
wavelength). To focus on the oscillatory component, the self-normalized
charge density variations may be considered:

δρ(z) ≡ ρe(z)− 〈ρe(z)〉
〈ρe(z)〉 (4.13)

= − 1
CD

(
k2

F +
1
4

∂2

∂z2

)
SD

(
2πz

D

)
(4.14)

where 〈· · · 〉 indicates the average over z. An example of this quantity is
shown in Fig. 4.2 as a solid curve, where it exhibits sinusoidal oscillations
that dampen away from the film boundaries (vertical dashed lines).

Note that in the limit D → ∞, our system changes from a quasi-two-
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Figure 4.2: The self-normalized charge density variations in a metal film
(solid curve) exhibit strong oscillations with a wavelength of λF /2, which
dampen away from the film boundaries. In the bulk limit (red dotted curve),
they are identical to the normal Friedel oscillations found near the surface
of bulk metals.

dimensional film into a semi-infinite slab. In this limit,

SD(x) →
∫ kF

0
cos

(
kzDx

π

)
D

π
dkz (4.15)

=
1
x

sin
(

kF Dx

π

)
(4.16)

CD →
∫ kF

0

(
k2

F − k2
z

) D

π
dkz (4.17)

=
D

π

2
3
k3

F (4.18)

and Eq. (4.14) becomes

lim
D→∞

δρ(z) = −
(

4
3
k3

F

)−1 (
k2

F +
1
4

∂2

∂z2

)
1
z

sin(2kF z) (4.19)

= −3
2

(
1 +

∂2

∂u2

)
sinu

u
(4.20)

= 3
(

cosu

u2
− sinu

u3

)
(4.21)

where the substitution u = 2kF z has been made. This equation is the
familiar form of the Friedel oscillations in the electron density near the
surface of a bulk metal, which one would expect to recover in this limit.
For comparison, these regular Friedel oscillations are shown in Fig. 4.2 for
a semi-infinite bulk metal (dotted curve).

When D is sufficiently large, the charge density variations are well rep-
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resented by the superposition of the Friedel oscillations due to the two film
boundaries. Intuitively, the Friedel oscillations derived from the two bound-
aries can overlap and interfere as D becomes small, but the situation is ac-
tually more complicated. The Friedel oscillations in a bulk metal arise due
to the upper limit to the wave vector (the Fermi level) of electronic states
available as Fourier components and the pinning of their relative phases due
to the loss of translational symmetry. The states that are available, though,
form a continuum from k = 0 to kF . In the case of a thin film, the electron
wave functions are pinned in phase by both boundaries, giving rise to inter-
ference effects. Furthermore, the continuum of k states is reduced to a set
of subbands, as shown in Fig. 4.1. This reduction in the Fourier basis set
can also lead to differences from the bulk. In short, charge oscillations in
ρe(z) and δρ(z) for a film are the result of a phased sum of a discrete set of
subband wave functions. One distinct difference between the film’s density
oscillations and the bulk Friedel oscillations is that the charge density vari-
ations in the film do not oscillate about the average charge density of the
film (which would correspond to δρ = 0), but a value slightly larger. This
effect will have important consequences for the Fermi level.

4.3 Fermi Level

As the size of the quantum well gets smaller, the separation between the
subbands will get wider and the number of available states will decrease.
There are two consequences of this that need to be recognized. First, the
number of occupied electronic states (i.e., the total number of electrons)
in the quantum well will not necessarily be proportional to the film thick-
ness if one assumes a fixed Fermi level. Second, as can be seen in Fig. 4.2,
the charge density variations have tails at the film boundaries. As a re-
sult, regions of electron depletion are present near the film boundaries. To
compensate, a net charge builds up in the rest of the film, which produces
a charge imbalance. Both of these effects can be compensated for by an
appropriate adjustment of the Fermi level as a function of thickness and by
letting the quantum well width expand slightly at the film boundaries so
that the electron density can tunnel slightly past the classical boundaries of
the film. Specifically, there are two different constraints that can be applied
to the model:

Constraint #1: Charge neutrality. The number of electrons in the the-
oretical quantum well is required to be equal to the number of electrons one
expects to find in the film given the bulk electron density of the material.
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This constrains the film to be electrically neutral overall, which is appro-
priate for free-standing slab calculations, but not necessarily for supported
films, where an interface charge layer can form.

Constraint #2: Charge balance. The average electronic charge density
in the middle of the quantum well is balanced with the constant positive
background due to the ion cores; i.e., the total charge density oscillates
about zero. This constraint minimizes the net electric field in the film and
hence also its Coulomb energy.

Although similar, these two constraints are distinct from each other —
charge neutrality (Constraint #1) is not necessarily equivalent to charge
balance (Constraint #2). In the bulk, there is no distinction since bound-
ary effects are negligible, but in the case of a film, both constraints are
satisfied only under very special circumstances, as will be seen below.

In the simplest case, the width of the quantum well is D = Nt, where t

is the average interlayer spacing of the film. This width is also the extent of
the positive uniform background in the jellium model and will be referred to
as the classical width of the film since it ignores any boundary effects and is
appropriate in the D →∞ limit. However, in this case the infinite boundary
potentials do not allow any of the electronic charge density to spill past the
classical boundaries of the film. Nonetheless, such a scheme represents a
reasonable starting point for discussion. A more realistic treatment of the
boundary conditions will be introduced later.

To enforce charge neutrality (Constraint #1), the diminishing number
of occupied states for decreasing film thickness must be compensated by an
appropriate adjustment of the Fermi level. Given the thickness, the total
number of electrons in the film is

Ne = NvalN
A

Acell
(4.22)

where N is the number of atomic layers in the film, A is the surface area of
one film interface, Nval is the number of itinerant valence electrons per atom
of film material (Nval = 4 for Pb), and Acell is the area of the surface unit
cell. In contrast, the total number of electrons in the theoretical quantum
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Figure 4.3: The Fermi energy of a Pb(111) film as a function of thickness,
normalized to its bulk free-electron value. In the infinite well model, when
the quantum well width is exactly equal to Nt, the Fermi level rises dras-
tically as the film thickness decreases (dotted curve) to compensate for the
areas of electron depletion near the film boundaries (see Fig. 4.4). However,
if the electron density is allowed to spill past the classical film boundaries,
such compensation is unnecessary and the Fermi level oscillates about its
bulk value (solid curve). This Fermi level is very similar to that found in a
model where the bounding potentials are finite (dashed curve).

well is calculated by summing over the allowed subbands

NQW
e =

2V

8π3

∫

|k|<kF

d3k
n0∑

n=1

2π

D
δ
(
kz − πn

D

)
(4.23)

=
V

2π2D

n0∑

n=1

π

[
k2

F −
(πn

D

)2
]

(4.24)

=
A

2π
CD (4.25)

where CD is defined in Eq. (4.10). Setting NQW
e = Ne yields the constraint

CD =
2πNvalN

Acell
. (4.26)

The results of solving this constraint for the Fermi energy, EF = ~2k2
F

2me
, are

shown in Fig. 4.3 (dotted curve) normalized to the bulk free-electron value.
As D → 0 the Fermi energy rises steeply and for the first few integer N thick-
nesses, the Fermi level is up to ∼40% larger than its bulk value. Cusps are
also evident at thicknesses where an additional subband becomes occupied
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Figure 4.4: Charge density profiles for a quantum well with N = 5. (a)
Assuming the boundary potentials are infinite in magnitude, the electronic
charge density is forced to zero at the film boundaries, causing an area of
electron depletion (shaded areas below |ρe| = 4, the background charge
density from the Pb ion cores). To compensate, the inner portion of the
film takes on a net charge. (b) If the charge density is allowed to spill past
the classical boundaries of the film, as happens in a real film, this effect can
be minimized.

(i.e., when n0 increases discontinuously) as the film thickness increases.
The steep rise in EF is specific to the infinite boundary potentials, since it

is not present in a finite well model (dashed curve in Fig. 4.3, see Sec. 4.5.3).
The infinite boundary potentials force the wave functions of all the quan-
tum well states to go to zero, creating an area of electron depletion near the
film boundaries, as illustrated in Fig. 4.4(a) with electron density profiles
as calculated in Sec. 4.2. In order to satisfy the condition of overall charge
neutrality, Eq. (4.26), the electron density in the center portion of the quan-
tum well must get ever larger with respect to the positive background as
the film thickness decreases to compensate for these areas of electron de-
pletion. This charge imbalance leads to a net electric field inside the metal
film. However, in a real metal film the confining potentials are not infinite
and the electron density will spill slightly past the classical boundaries of
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the film, reducing the region of electron depletion. To simulate this aspect
of the system, define the well width to be

D = Nt + 2∆ (4.27)

where ∆ is the distance the quantum well is allowed to expand at each
boundary to allow for some charge spillage. This procedure is analogous to
the boundary phase shifts that are often employed in quantum well analyses
[36]. For now, the symmetric case will be considered where the charge
spillage at each interface is the same, which is not the case for an actual
supported film.

The charge imbalance that results in the steep rise in EF is minimized
when the electronic charge density oscillates about the constant positive
background level due to the ionic cores; i.e., when Constraint #2 is satisfied.
This condition is obtained by extracting the non-oscillatory component of
Eq. (4.8)

ρe = − e

2πD

(
CD +

1
2
k2

F

)
. (4.28)

Note that this quantity is distinct from the average electronic charge density,
〈ρe(z)〉, which is equal to the first term only — the quantity SD has a zero
integral between z = 0 and D, but oscillates about the value −1

2 away from
the boundaries, as can be seen from Eq. (4.12). This difference results from
the charge spillage tails in ρe(z) at the film boundaries, as seen in Fig. 4.4.
In the limit D →∞, the effects of the interfaces become negligible, CD ∝ D

and ρe → 〈ρe(z)〉. This discrepancy is also evident in Fig. 4.2, where the
self-normalized charge density variations for the film can be seen to oscillate
about a value slightly larger than zero. The condition of charge balance is
thus obtained when ρe is equal to the magnitude of the constant positive
(jellium) background

ρe = −Nval e

Acellt
, (4.29)

which when combined with Eq. (4.28) yields

CD =
2πNvalD

Acellt
− 1

2
k2

F . (4.30)

This constraint is very similar in form to Eq. (4.26). Note that if D = Nt,
both constraints are only satisfied in the limit N → ∞. However, with
D 6= Nt there are two degrees of freedom that can be used to meet these
two constraints: kF and ∆.
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Figure 4.5: The Fermi energy for a Pb(111) film as a function of thickness
applying only the condition of charge balance (Constraint #2) inside the
film, normalized to the free-electron bulk value.

Solving Eqs. (4.26) and (4.30) simultaneously along with Eq. (4.27), one
finds that the charge spillage is proportional to the Fermi energy

∆ =
Acellt

4πNval

m

~2
EF . (4.31)

Using the bulk Fermi level for Pb(111) gives a charge spillage of ∆ = 0.262t.
The Fermi level for the infinite well model with this charge spillage is shown
in Fig. 4.3 as a solid curve, which is within 1% of its bulk value for integer
N ≥ 1. Figure 4.4(b) shows the electronic charge density profile inside the
quantum well in this case, where it can be seen that the tails in the density lie
partially outside the classical boundaries defined by the positive background,
thus reducing the region of electron depletion within the classical boundaries.
The result is a surface dipole layer. Note that the issue of charge spillage
is automatically accounted for in a model with finite bounding potentials.
Such a model is developed in Sec. 4.5.3, which yields results very similar to
the present model, as shown in Fig. 4.3 with a dashed curve.

It is also possible to enforce the charge balance condition (Constraint
#2) while relaxing the charge neutrality constraint (Constraint #1). In this
case, since Eq. (4.30) only explicitly contains the variables D and kF [as
opposed to Eq. (4.26), which also explicitly depends on N ], the Fermi level
can be found for a given well thickness. Solving Eq. (4.30) for kF in this
case results in the Fermi level shown in Fig. 4.5. Note that here the Fermi
level is only dependent on the width of the quantum well, which is distinct
from the values shown in Fig. 4.3, which are determined by N , the number
of atomic layers in the film. Of course, if the charge neutrality constraint
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is relaxed, then the theoretical film can take on a net charge. However,
in practice the charge spillage parameter is still used, only it is utilized
as an adjustable parameter. As long as it is close to the value given by
Eq. (4.31), the discrepancy between total charge of the film and that of the
quantum well is small. For a film supported on a substrate and in contact
with a reservoir of electrons, this effect is accounted for by the formation of
an interface charge layer. For such a system, charge conservation must be
considered for the entire system, not for the film alone.

In summary, if only Constraint #1 is enforced, without taking into ac-
count the charge spillage of the electron density past the classical boundaries
of the film, the Fermi level rises steeply for small film thicknesses, a situation
that does not reflect reality. When charge spillage is added to the model
and charge balance is approximately achieved, the Fermi level is very close
to its bulk value. In this case, Constraint #1 is enforced while Constraint
#2 is only approximately obeyed. Alternatively, in some instances it may
be more appropriate to enforce the charge balance condition while relaxing
the condition of charge neutrality. In this case, Constraint #2 is enforced
strictly and the Fermi level is close to the bulk value as shown in Fig. 4.5.
Constraint #1 will be approximately satisfied as long as the charge spillage
is a reasonable value. In this case, the film takes on a net total charge; how-
ever, such an effect is justified if the experimental reality of the substrate is
taken into account.

4.4 Lattice Distortions

4.4.1 Overview

In Chapter 5, an analysis of x-ray diffraction data is presented that indicates
the presence of significant lattice distortions (strain) in the atomic-layer
structure of ultrathin Pb/Si(111) films. These distortions are then correlated
with the free-electron charge density oscillations described in Sec. 4.2. In
this section, the free-electron models used in the experimental analysis are
derived. In principle, the models are valid for any sufficiently free-electron-
like metal film; however, the discussion and examples will concentrate on
the effects specific to Pb films since they are most applicable to the present
work.

To relate the lattice distortions to the charge density variations, there
are two models that can be followed. Either one can recognize that any
lattice distortions due to variations in the charge density will be propor-
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tional to the local gradient of the charge density near each atomic plane,
or one can calculate the electrostatic force on each atomic plane due to the
charge distribution of the entire system. Within the local gradient approx-
imation, the positively charged atomic cores move toward regions of higher
electronic charge, but the charge distribution away from the point of inter-
est is ignored. The two models actually yield very similar functional forms
for the electronic forces, which is to be expected. The electrostatic field
corresponds to an integral of the charge density, while the local gradient
corresponds to a derivative of the charge density. Since the charge den-
sity variations within the film are dominated by sinusoidal oscillations (at a
wavelength of λF /2), its integral and derivative should be similar. Numer-
ical results to be presented below confirm that the differences (with proper
choices of normalization constants) are small and well within the errors of
our analysis.

In Sec. 4.3 it was noted that the electronic charge density will tunnel into
the classically forbidden regions slightly and accounted for this reality with
symmetric charge spillage parameters at the well boundaries. However, for
the purpose of describing lattice distortions in the film, the asymmetry in
the properties of the two film interfaces is important. Thus, in this section
the width of the quantum well is defined to be

D = ∆s + Nt + ∆0 (4.32)

where ∆s and ∆0 are the charge spillage distances into the substrate and
vacuum, respectively. Given this definition, the coordinate positions of each
atomic plane in the absence of any lattice distortions would be

zj = ∆s + (j − 1
2)t j = 1, 2, . . . , N, (4.33)

where j = 1 corresponds to the atomic layer closest to the substrate. The
introduction of independent charge spillage parameters into the model is
essentially equivalent to introducing one phase shift function at the surface
z = D − ∆0, and another at the buried interface z = ∆s. For an infinite
barrier, the phase shift has a fixed value of −π, but by moving the film
boundaries by ∆s and ∆0, the phase shifts become adjustable and can be
made to mimic the actual system [36].

The presence of the substrate is therefore being taken into account ex-
plicitly in these models. Thus, the application of Constraint #2 is more
appropriate in this case and the Fermi level shown in Fig. 4.5 will be used.
Charge is conserved for the film-substrate system but not necessarily for the
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Figure 4.6: (a) The electronic charge density (solid curve) with a posi-
tive uniform background (dotted lines) for a Pb(111) film with a nominal
thickness of 7 AL. (b) The electric field inside the quantum well (solid
curve) compared to the first derivative of the self-normalized charge den-
sity variations (dotted curve). Vertical dotted lines indicate the positions of
atomic planes in the well where the functions are sampled. The two curves
are functionally similar at the atomic planes but differ in the boundary
regions.

film alone; thus, the condition of charge neutrality for the film (Constraint
#1) is not necessarily strictly obeyed. Since the values for ∆0 and ∆s were
both found to be close to the value given by Eq. (4.31), the magnitude of
the interface charge layer will be small and well within reasonable expecta-
tions (a fraction of e per interface atom is typical, depending on the charge
transfer [85]).

4.4.2 The Local Charge Density Gradient

In calculating the local gradient of the charge density, any uniform posi-
tive background (as in the jellium model) can be ignored since it does not
contribute to the derivative of the charge density anywhere except the two
discontinuities at the film boundaries. Similarly, the constant portion to
the electronic charge density, CD, does not contribute to the charge density
gradient. Thus, for simplicity the self-normalized charge density variations,

89



4. FREE-ELECTRON MODELS

Eq. (4.14), are considered. Under the assumption that the displacement
of each atomic plane is proportional to the local gradient of the calculated
charge density, the change in atomic layer spacing between layers j and j+1
is

∆tj,j+1 = K

[
∂

∂z
δρ(zj+1)− ∂

∂z
δρ(zj)

]
(4.34)

where a linear response coefficient K has been included. Since this quantity
involves a local difference, the local gradient approximation is expected to
work well. In other words, electrostatic fields derived from charges far away
from the two atomic layers of interest should have little effect. This method
of calculating the lattice distortions results in a model with four adjustable
parameters: K, ∆s, ∆0, and t. The last quantity should be close but not
necessarily identical to the value found in the bulk material.

An example of the charge density inside the quantum well in this model is
shown in Fig. 4.6(a) (solid curve) along with its first derivative in Fig. 4.6(b)
(dotted curve with scale on the right axis). Since the displacement of each
atomic plane in this model follows the first derivative of the charge density
variations, this is the quantity that will determine the form of the lattice
distortions. Since it is the derivative of an oscillatory function with a pe-
riodicity of λF /2, the lattice distortions will also have this periodicity. For
Pb(111), λF /2 ≈ 2

3 AL and so every two interlayer spacings of the film will
correspond to approximately three full oscillations in the derivative of δρ.
Since the lattice consists of discrete atomic planes, any distortions due to
the electronic charge density variations are therefore expected to have an
approximately bilayer periodicity.

Note that our numbering convention for the atomic layers differs from
that used in many other studies in the literature, where the notation d12 is
often used to denote the interlayer distance between the two layers closest
to the vacuum. Hence,

d12 = ∆tN−1,N + t

d23 = ∆tN−2,N−1 + t

...

dN−1,N = ∆t1,2 + t.

4.4.3 The Electrostatic Force

To calculate the electrostatic force, the total charge density is needed, in-
cluding contributions from the positive atomic cores. In keeping with the
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spirit of the free-electron model, a uniform positive (jellium) background is
used. The total charge density is then

ρ(z) = ρe(z) +
Nval e

Acell t

[
H(z −∆s)−H(z −D + ∆0)

]
, (4.35)

where H(x) is the Heaviside step function

H(x) =





0 x < 0

1 x > 0.
(4.36)

The electric field is related to the charge density by

∂

∂z
E(z) =

1
ε0

ρ(z) (4.37)

where E is the z component of the electric field (the only non-zero component
by symmetry). Integrating this equation and using Eqs. (4.8) and (4.35)
yields

E(z) =
1
ε0

∫ z

0
ρ(z′)dz′ + E(0)

= − e

2πε0D

[
CDz −

n0∑

n=1

(
Dk2

F

2πn
− πn

2D

)
sin

(
2πnz

D

)]

+
Nval e

Acell t

[
R(z −∆s)−R(z −D + ∆0)

]
+ E(0) (4.38)

for the electric field, where R(x) is the ramp function

R(x) =





0 x < 0

x x > 0.
(4.39)

The atomic cores each have a net charge of Nvale so the change in the
interlayer spacing between layers j and j + 1 is

∆tj,j+1 =
Nval e

K ′
[
E(zj+1)− E(zj)

]
(4.40)

where K ′ is a force constant. Note that the term E(0) in Eq. (4.38) has no
effect on the interlayer spacings.

The electric field model for the lattice distortions also has four adjustable
parameters, as with that of the last section, with the role of the linear
response coefficient K taken by 1/K ′. A comparison of the electric field to
the first derivative of the charge density variations is shown in Fig. 4.6(b). As
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would be expected, they have a similar functional form over the range where
atomic planes are located. The differences can become significant outside
the atomic layers due to the tail of charge spillage, but these differences are
irrelevant to our analysis of atomic layer strain.

4.5 Surface Energy

4.5.1 Overview

In Chapter 6 a stability analysis is presented of Pb/Si(111) films that have
been annealed to a state of quasi-equilibrium. Such experiments provide
information on the relative stability of different film thicknesses over a wide
range of thicknesses. In this section, two different free-electron models for
the surface energy of a metal film are discussed. The first model is based
upon an infinite quantum well model like that of the previous sections of the
chapter, whereas the second model is based upon a quantum well with finite
bounding potentials, the results of which are compared with the infinite well
model and are found to be similar.

These models are meant only to illustrate some of the thickness-depen-
dent effects due to confinement of the itinerant electrons in a metal film
(QSEs) and are not meant to describe the surface energy in quantitative
detail. Hence, only the functional form of the surface energy will be used in
the experimental analysis, with adjustable parameters included to account
for the specific phenomenology encountered in the actual experiment. For
simplicity, only the symmetric case is considered where the charge spillage
at each interface is the same; i.e., the calculation is for a free-standing slab.
Thus, the Fermi level shown in Fig. 4.3 as a solid curve is used where both
constraints are approximately obeyed by using the charge spillage given by
Eq. (4.31) for the bulk free-electron Fermi energy. Since this calculation
does not take into account the differences in the two film boundaries (i.e.,
no substrate), it should only be considered correct to within an unknown
phase shift with respect to the interface (that will henceforth become an
adjustable parameter).

4.5.2 Infinite Well

The point of departure for calculating the surface energy of a metal film is
the same as it was in Sec. 4.2; namely, the film is modelled by a free-electron
gas confined to a quantum well with infinite potential barriers. In general,
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the energy of a free-electron gas is

E =
2V

8π3

∫

|k|<kF

d3k
~2|k|2
2me

. (4.41)

However, when the gas is confined to a quantum well, the Fermi sphere of
allowed states is reduced to a series of subbands, as shown in Fig. 4.1. The
total electronic energy of the film then becomes

E =
2V

8π3

∫

|k|<kF

d3k
~2|k|2
2me

n0∑

n=1

2π

D
δ
(
kz − nπ

D

)
(4.42)

=
A~2

4π2me

n0∑

n=1

∫ √
k2

F−k2
z

0
2πk‖

(
k2
‖ + k2

z

)
dk‖ (4.43)

=
A~2

8πme

n0∑

n=1

(
k4

F − k4
z

)
(4.44)

where A is the surface area of one interface of the film such that V = DA.
In the last two expressions it is implicit that kz is the discrete index given
by Eq. (4.3). Substituting the explicit values for kz into the formula yields

E =
A~2

8πme

[
n0k

4
F −

( π

D

)4
n0∑

n=1

n4

]
(4.45)

=
A~2

8πme

[
n0k

4
F −

( π

D

)4 1
30

n0(n0 + 1)(2n0 + 1)(3n2
0 + 3n0 − 1)

]
. (4.46)

The total energy can be separated into contributions from the bulk and
surface [71]

E = εbV + 2εsA, (4.47)

where εb and εs are the bulk and surface energy densities, respectively. The
factor of two results from the two separate surfaces of our model system
slab. The bulk contribution can be found by taking the D → ∞ limit of
Eq. (4.46), when boundary effects are negligible,

εb = lim
D→∞

E

V
(4.48)

=
~2

(
kbulk

F

)5

10π2m
(4.49)

=
3
5

Ne

V
Ebulk

F , (4.50)
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where the free-electron results for the electron density Ne
V = 1

3π2

(
kbulk

F

)3

and the bulk Fermi energy Ebulk
F =

~2(kbulk
F )2

2me
were used to arrive at the last

expression, which may be more familiar to the reader. Note that this same
expression can be obtained by integrating Eq. (4.41) without the quantiza-
tion condition, Eq. (4.3). Using Eqs. (4.46) and (4.47), the surface energy
density is then

εs =
~2

16πm

[
n0k

4
F −

4
5π

(
kbulk

F

)5
D

−
( π

D

)4
(

1
5
n5

0 +
1
2
n4

0 +
1
3
n3

0 −
1
30

n0

)]
. (4.51)

Using the Fermi level as found in Sec. 4.3 (solid curve in Fig. 4.3), the
relative surface energy per surface atom, ES = Acellεs, for a Pb(111) film
calculated with Eq. (4.51) is shown in Fig. 4.7(a) as a continuous function
of N (solid curve). A constant offset, which is irrelevant in a discussion of
the relative stability of different thicknesses, has been subtracted off so that
the amplitude of the oscillations is more apparent. The oscillations have
a wavelength of π/kF = λF /2. This behavior, which is characteristic of
quantum size effect phenomena, can be understood as follows. The number
of subbands, or Fermi disks (see Fig. 4.1), that falls below the Fermi level
is n0 = int

(
kF D

π

)
, so every expansion of the well D → D + π/kF results

in an additional subband crossing the Fermi level. This periodic addition
of subbands results in oscillations in the surface energy that dampen as the
subbands get closer together with increasing film thickness. Since the Fermi
level shown in Fig. 4.3 is relatively constant, the oscillations in the surface
energy have a regular periodicity of π/kF .

Since the film must be composed of an integer number of atomic layers,
the surface energy of an actual film will only take on the values at integer
N , which are shown in Fig. 4.7(b) as open circles. Even-odd alternations in
the values are evident with a phase reversal (even-odd crossover) occurring
periodically. This effect is due to interaction of the discrete nature of the
atomic lattice structure of the film with the oscillations in the surface energy.
Half the Fermi wavelength for Pb(111) is very close to 2

3 an atomic interlayer
spacing; thus, every two film layers corresponds to approximately three full
oscillations in the surface energy. Since the relationship is not exact, the
bilayer alternations will have a beating pattern superimposed over them
causing the phase reversal effect. The envelope of this beating function is
shown in Fig. 4.7(b) with dashed curves.
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Figure 4.7: (a) The surface energy for a Pb(111) film calculated using
a model based on a free-electron gas confined to an infinite quantum well
with charge spillage (solid curve). Oscillations are evident that are well-
described by a damped sinusoidal form (dotted curve). (b) The same data
for thicknesses of an integer number of atomic layers. Bilayer oscillations
within an overlying beating pattern (the envelope for which is shown with
dashed curves) result from interference of the oscillations shown in (a) and
the discrete lattice of the crystalline film.

The relative surface energy is well-described by the phenomenological
sinusoidal form

ES = A
sin(2kbulk

F Nt + φ)
Nα

+ B (4.52)

where A is an amplitude parameter, φ is a phase shift factor that will be
dependent on the interface properties of the film, α is a decay exponent, and
B is a constant offset, which was subtracted off from ES to obtain the values
in Fig. 4.7. A fit of this function to the surface energy is shown as a dotted
curve in Fig. 4.7(a) and as crosses in Fig. 4.7(b). The decay exponent, which
is the only parameter value used in the experimental analysis, was found to
be α = 1.77 ± 0.09 over the range of N relevant to this work (it can vary
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Figure 4.8: A schematic of the finite quantum well used to calculate the
surface energy. Two potential barriers confine the quantum well states to
the Pb film in the middle of the diagram. The wave functions are shown
for n = 1, 2, 3, and 10.

slightly for different ranges of N).

4.5.3 Finite Well

An alternative model for the surface energy of a thin metal film can be
constructed with finite potential barriers. The quantum well for such a
model is shown schematically in Fig. 4.8, where Vs is the confining potential
at the buried interface, and V0 is the vacuum confinement potential. These
potentials can be broken up into the components

Vs = EF + Φs

V0 = EF + Φ0

(4.53)
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where Φ0 is the work function of the film material and Φs is an effective
potential step encountered by an electron travelling between the film and
substrate. In an actual physical system, the electrons in the film material
are confined by the band gap of the semiconductor substrate, which does
not behave like a simple potential barrier [36]. Thus, a simple step-potential
model is not expected to accurately describe the system. Nonetheless, the
finite quantum well model provides an alternative to the infinite well and
illustrates some of the general strengths and weaknesses of using a free-
electron model. In all subsequent calculations, the values Φ0 = 4 eV, the
work function of Pb, and Φs = 0.6 eV, the Schottky barrier of the Pb/Si(111)
interface [85], will be used.

The z components of the wave functions for the confined states in this
model are of the form

ψ(z) =





C1 exp (κsz) z < 0

C2 sin(kzz) + C3 cos(kzz) 0 < z < D

C4 exp [−κ0(z −D)] z > D

(4.54)

where C1–C4 are constants subject to normalization and boundary condi-
tions, and κs, κ0, and kz are all real quantities for confined states. Enforcing
energy conservation at the well boundaries (i.e., the three regions of the wave
function must have the same energy) leads to the two relations

κs =

√
2mVs

~2
− k2

z

κ0 =

√
2mV0

~2
− k2

z .

(4.55)

Requiring continuity of ψ and its first derivative at the boundaries z = 0
and z = D results in four more conditions

C1 = C3

C1κs = C2kz

C4 = C2 sin(kzD) + C3 cos(kzD)

−C4κ0 = C2kz cos(kzD)− C3kz sin(kzD),

(4.56)

which can be solved algebraically to yield the transcendental equation

tan(kzD) =
κs + κ0

k2
z − κsκ0

kz. (4.57)

Due to the periodic nature of the tangent function on the left side of this
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equation, there will be a series of discrete solutions to this equation for kz

(and thus also κs and κ0) corresponding to the discrete subbands or Fermi
disks shown in Fig. 4.1. Using the trigonometric identities

arctan
(

x + y

1− xy

)
= arctanx + arctan y

and

arctanx =
π

2
− arctan

(
1
x

)
,

yeilds the result

kzD = nπ − arctan
(

kz

κs

)
− arctan

(
kz

κ0

)
, (4.58)

which can be solved numerically for the discrete solutions indexed by the
integer n, which is the quantum number of the corresponding subband.
Note that in the limit Vs, V0 → ∞, this equation reduces to Eq. (4.3), the
quantization condition for the infinite well. Equation (4.58) is the usual
Bohr-Sommerfeld quantization rule, with the two arctangent terms related
to the phase shifts at the two boundaries.

Finally, if one wishes to fully solve for the wave function given in
Eq. (4.54), the values for the constants C1–C4 can be determined by solving
the normalization condition

∫ ∞

−∞

∣∣ψ(z)
∣∣2dz = 1, (4.59)

which yields

C1
2

2κs
+

C4
2

2κ0
+

D

2
(
C2

2 + C3
2
)

+
1

4kz

(
C3

2 − C2
2
)
sin(2kzD)

+
C2C3

2kz

[
1− cos(2kzD)

]
= 1. (4.60)

Sample wave functions are shown in Fig. 4.8 for different subbands.
As in Sec. 4.3, the Fermi level must be appropriately chosen so that the

number of electrons in the quantum well,

NQW
e =

A

2π

∑

kz<kF

(
k2

F − k2
z

)
, (4.61)

remains equal to the number of free electrons given the amount of film
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Figure 4.9: (a) The surface energy for a Pb(111) film calculated using a
model based on a free-electron gas confined to a finite quantum well (solid
curve), along with a fit to a damped sinusoidal function (dotted curve). (b)
The same data for integer numbers of atomic layers. Bilayer oscillations
similar to those in Fig. 4.7(b) are evident with a slightly different envelope
function.

material, Eq. (4.22). The resulting Fermi level for a Pb(111) film is shown in
Fig. 4.3 as a dashed curve, which is very similar to that found in the infinite
well model with charge spillage. In this case, the Fermi energy remains
above the bulk value for all thicknesses, though, with its value about 4%
larger than the bulk for N = 1 and much closer thereafter.

A completely analogous procedure can be used to reach Eq. (4.44) for
the total electronic energy of the film and

εs =
~2

16πm


 ∑

kz<kF

(
k4

F − k4
z

)− 4
5π

(
kbulk

F

)5
D


 (4.62)

for the surface energy density. The relative surface energy per surface atom
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Figure 4.10: The electronic charge density inside the film calculated with
the finite well model. The profile is very similar to that from the infinite
well model with charge spillage, Fig. 4.4(b). However, the average density
inside the film does not exactly cancel with the positive ionic background,
resulting in the upwards bend in the surface energy as N → 0.

is shown in Fig. 4.9(a) with the values for integer N shown in Fig. 4.9(b). It
exhibits oscillations similar to those seen with the infinite well in Fig. 4.7. In
addition, a slight upwards bend to the surface energy is apparent as N → 0,
which is particularly noticeable in the integer N data of Fig. 4.9(b). This
effect can be accounted for by adding an additional parameter to Eq. (4.52)

ES = A
sin(2kbulk

F Nt + φ) + C

Nα
+ B. (4.63)

A fit to the surface energy with this equation is shown in Fig. 4.9(a) with a
dotted curve and Fig. 4.9(b) with crosses. The decay exponent in this case
was found to be α = 1.74± 0.05, consistent with the decay exponent of the
infinite well model. The amplitude was also found to be similar. Both mod-
els exhibit quasibilayer oscillations that decay as ∼N−1.75 with thickness,
which is the primary result taken from the free-electron calculations. The
extra parameter C in Eq. (4.63) was found to be unimportant in our fit to
the experimental data and is therefore not used.

An explanation for the upwards bend in the surface energy as the thick-
ness gets smaller can be found by examination of the electronic charge den-
sity in the finite quantum well, which can be calculated in the same manner
as for the infinite well. The full wave function is this case is

Ψk(r) =
1√
A

eikxx+ikyyψn(z) (4.64)
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where ψn(z) is the properly normalized wave function for the subband in-
dexed by the quantum number n, defined in Eq. (4.54). The electronic
charge density as a function of z is then

ρe(z) = − e

2π

∑

kz<kF

(
k2

F − k2
z

) ∣∣ψn(z)
∣∣2. (4.65)

A plot of the electron density for N = 5 is shown in Fig. 4.10. As one
would expect, the electron density spills past the classical boundaries of the
film due to the finite potential barriers, similar to the curve in Fig. 4.4(b).
However, no condition of charge balance has been imposed analogous to that
done for the infinite well model with Eq. (4.30). Since the charge spillage is
automatically accounted for in this model, there is no additional parameter
such as the ∆ used in the infinite well model that can be adjusted to meet
such a constraint. As a result, the oscillations in the electron density inside
the film do not exactly cancel with the positive background from the ion
cores and a net electric field is present in the film. This situation is similar
to that in Fig. 4.4(a), but to a much lesser degree. In that case, the charge
imbalance in the quantum well resulted in an upwards bend in the Fermi
level as N → 0, which translates into a similar effect in the surface energy.
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5 Lattice Distortions in
Pb/Si(111) Films

5.1 Experiment Overview

As mentioned in Chapter 1, Pb/Si films serve as prototypical metal-on-
semiconductor systems that have already proved to exhibit strong effects due
to QSE. Most previous studies have focused on the interesting “nanomesa”
morphology illustrated in Fig. 1.2. For this study, though, a lower growth
temperature was used at which it was found that the films follow a layer-by-
layer growth mode. Such a growth mode allows examination of thicknesses
that are metastable with respect to the overall energy landscape (i.e., not
preferred or “magic”) as well as stable thicknesses. When the structure
of these films is studied in detail, quasibilayer distortions are found in the
atomic layer structure of the films consistent with a period of half the Fermi
wavelength [83,86], which is characteristic of QSE phenomena.

For the experiment, Pb films were grown in situ using molecular beam
epitaxy at a rate of 0.53 Å/min. The sample temperature was maintained
at 110 K during deposition and for all subsequent measurements. Time-
resolved information on the growth behavior and evolving film morphology
was obtained by monitoring the reflectivity of the sample at the out-of-
phase condition for Pb(111). In addition, at near-integer coverages, film
growth was interrupted and the extended specular x-ray reflectivity rod
profile measured to determine the detailed film morphology. The integrated
intensity of the reflectivity rod was measured both with the rocking curve
and ridge scan methods, which were found to be equivalent for the range
of momentum transfer studied (see Sec. 3.6). All of the experimental data
presented here were obtained via the ridge scan method since they represent
the more comprehensive set.

5.2 Growth Behavior

During deposition, the growth of the Pb overlayers was monitored by mea-
suring the reflected x-ray intensity at l = 1.65, where l is the perpendic-
ular momentum transfer in Si(111) reciprocal lattice units as defined in
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Figure 5.1: (a) Experimentally observed oscillations in the reflected x-
ray intensity at the out-of-phase point for Pb(111), l = 1.65, and a fit
using the model described in the text. The oscillations every two atomic
layers indicate that the growth is layer-by-layer whereas the decay of the
oscillations is an indication of increasing roughness, which is shown in (b).

Eq. (2.32). This point in reciprocal space, halfway between the origin and
the Pb(111) Bragg condition, is the lowest-order out-of-phase condition for
the Pb overlayers and as such is highly sensitive to changes in the sur-
face structure. The initial portion of such a growth curve is shown in
Fig. 5.1. The regular oscillations in the intensity are indicative of layer-
by-layer growth [48,49,70], which in this case is independently supported by
photoemission measurements [81]. The decay of the oscillations is a result
of increasing surface roughness in the film. Quantitative information can
be extracted from these data using the model of Sec. 2.6 for the reflected
intensity with a number of simplifying assumptions. First, since only one
point in reciprocal space is measured, the influence of lattice distortions on
the data will be minimal and it may be assumed that the atomic positions
of the Pb atoms are bulklike. Second, to reduce the number of parameters,

103



5. LATTICE DISTORTIONS IN PB/SI(111) FILMS

it is assumed that the distribution of thicknesses, {pN}, is Gaussian:

pN (τ) =
B(τ)
w(τ)

exp

{
−

[
N −Θ(τ)

]2

w(τ)2

}
(5.1)

where w and Θ are the width of the distribution and the total film cov-
erage (in AL), respectively, B is a normalization factor selected such that
Eq. (2.42) is satisfied, and τ is the deposition time. Third, it is assumed
that both w and Θ are linear functions of τ . Note that the parameter w is
only obliquely related to the rms roughness, which is defined as

σrms(τ) = t

√∑

N

pN (τ)
[
N −Θ(τ)

]2
. (5.2)

The results of a fit to this model are shown in Fig. 5.1(a) as a dotted
curve, with the corresponding roughness shown in Fig. 5.1(b). Considering
the simplicity of the model and the number of assumptions it entails, the
fit describes the data quite well after about 3 AL. Monitoring of an in-
plane superstructure peak from the (

√
3×√3)R30◦ interface reconstruction

shows it decaying rapidly during the initial phase of deposition. Thus, the
behavior of the data for Θ < 3 AL is probably affected by the transition of
the initially compressed 1.1 monolayer interface layer of the (

√
3×√3)R30◦

reconstruction to one of bulklike density. This interpretation is consistent
with previous studies that have shown that the reconstruction is removed
upon burial [48, 49,80].

Using this method, one can determine the initial coverage, the rate of
deposition, and the roughness of the film as a function of time while the film
is being grown. With this information, a film of a specific thickness can be
obtained by interrupting the deposition at the desired coverage. High quality
films with precise coverages up to 29 AL have been grown using this method.
As an additional check, independent measurements of the deposition rate
with a quartz crystal thickness monitor agree with the rates deduced from
the fits to the growth curves to within 5%.

A layer-by-layer growth mode with small roughness is important for a
study of the thickness-dependence of a film’s structure. In the case of Pb,
this can be problematic due to quasibilayer oscillations in the surface energy
as shown in Fig. 1.3, which is the underlying cause of the “preferred thick-
ness” effect that has been previously reported [21–28, 44, 45]. In fact, even
at 110 K, the temperature for this study at which the growth is layer-by-
layer, some indication of variations in the film stability are evident when the
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Figure 5.2: (a) The deduced roughness of a single film (solid curve) where
deposition was interrupted at integer coverages and the extended x-ray re-
flectivity measured. Error bars are indicative of the range of values obtained
using different fitting methods. The dotted curve is the roughness predicted
by a fit to the growth curve of the film as in Fig. 5.1. (b) The discrete sec-
ond derivative of the data in (a), which shows approximately quasibilayer
oscillations in the relative film stability, consistent with oscillations in the
surface energy found empirically in Chapter 6 (see Fig. 6.8).

film roughness is examined in detail. Figure 5.2(a) shows the roughness of
a film whose growth was interrupted at integer coverages and the extended
x-ray reflectivity measured. From fits to the reflectivity, the pN parameters
are determined and a value of the roughness is calculated with Eq. (5.2).
The trend of the roughness values follows closely that predicted from the
fit to the deposition curve (dotted curve); however, they do not increase
smoothly or even monotonically, with noticeable deviations from the over-
all trend. This effect is indicative of differences in the relative stability of
different film thicknesses. For layer-by-layer growth, the distribution of pN

values is peaked about the thickness closest to the coverage, as in Eq. (5.1),
but if that thickness is relatively unstable compared to neighboring thick-
nesses, the system will tend to be rougher, with the pN distribution broader
than it would be due to normal stochastic effects. Thus, the discrete second
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derivative of the roughness, σ′′rms, is an approximate indicator of the relative
stability of the film as a function of thickness. Thicknesses with σ′′rms > 0
are relatively stable whereas thicknesses with σ′′rms < 0 are only metastable.
These data are shown in Fig. 5.2(b), and indicate that Pb/Si(111) films of
thicknesses N = 8, 10, 12 and 15 AL are relatively stable and N = 9, 13,
16, and 18 are only metastable, with σ′′rms too close to zero for the other
thicknesses to make a prediction. These results are consistent with obser-
vations of films grown or annealed at higher temperatures [21–23, 25, 26],
and correspond well with the empirical form of the surface energy found in
Chapter 6. It can be therefore concluded that Pb grown on Si(111) at 110 K
follows a metastable layer-by-layer growth mode.

5.3 Quasibilayer Lattice Distortions

Films of integer coverages were grown using the process described above
for Θ = 6 − 19 AL. The extended x-ray reflectivity was then measured for
each coverage and fit using the formulas of Sec. 2.6. Since the films were
not annealed, the surface was assumed to be of relatively uniform thickness
over large lateral distances and no partial coherence factor was included
[i.e., Eq. (2.44) was used]. The full set of extended x-ray reflectivity data is
shown in Fig. 5.3, with selected coverages shown in more detail in Fig. 5.4.
The reflectivity profiles show some unusual features due to the distorted
layer structure of the Pb overlayers. Approximately halfway between the
Pb(111), (222) and (333) Bragg peaks at l ≈ 3.3, 6.6 and 9.9 (the last
one not shown), respectively, one of the interference fringes is consistently
larger than its neighbors (marked with inverted triangles). Since they appear
near the half-order position for Pb(111), these features are indicative of a
bilayer or quasibilayer superperiodicity in the structure of the film. This
effect is similar to the superstructure peaks often encountered with surface
reconstructions (see Sec. 2.4), except in this case the “reconstruction” is in
the direction normal to the surface. Since these half-order peaks are much
weaker in magnitude than the Pb Bragg peaks, the bilayer distortions are
weak and possibly only present in regions near the surface and buried film
interface. As can be seen from the dashed curves in Fig. 5.4, these features
cannot be reproduced by a model that does not include lattice distortions
in the film layer structure.

The origin of the quasibilayer distortions can be attributed to the varia-
tions in the charge density discussed in Sec. 4.2. Such variations are damped
oscillations with a characteristic wavelength of λF /2. For bulk Pb(111),
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Figure 5.3: The full extended x-ray reflectivity data set.
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Figure 5.4: Extended x-ray reflectivity data (points) for selected cover-
ages. The sharp peaks at l = 3 and 9 are the Si(111) and (333) Bragg
peaks, respectively, while the interference fringes in-between are due to the
Pb overlayers. The areas marked by inverted triangles are half-order fea-
tures indicative of a quasibilayer periodicity to the lattice structure of the
Pb film. Solid curves are fits using Method B described in the text. Dotted
curves are fits with uniform interlayer spacing in the film, which do not
represent the data well, especially near the half-order features.
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Figure 5.5: The internal lattice distortions for N = 14, calculated using
Eq. (4.40) with the parameters from a fit to the extended x-ray reflectivity.
Alternations in the distortions are evident, which leads to a quasibilayer
superperiod in the lattice structure, as shown with shaded boxes. This
effect manifests itself as a weak half-order superstructure peak in the x-ray
profiles, as seen in Figs. 5.3 and 5.4.

this wavelength is 1.98 Å, which is close to 2
3 the bulk interlayer spacing

t0 = 2.84 Å. Thus, every 2 AL of Pb roughly corresponds to an integral
number of oscillations in the charge density. Since the relationship is not
exact, the superperiodicity is quasibilayer, and the phase of even-odd oscil-
lations can reverse over a sufficiently wide range of thicknesses.

Oscillations are evident in the lattice distortions resulting from the fits
to the x-ray reflectivity, an example of which is shown in Fig. 5.5 for N = 14.
Most of the lattice relaxation occurs in the atomic layers closest to the two
film boundaries, but the quasibilayer distortions penetrate deep into the film
as well. An instance of phase reversal (even-odd crossover) is also evident.
The overall behavior reflects the force variations as shown in Fig. 4.6(b).
The asymmetry of the values in Fig. 5.5 is due to different values for the
two charge spillages ∆s and ∆0. The results for other thicknesses are qual-
itatively similar. The thickness dependence of these lattice distortions or
relaxations is shown in Fig. 5.6, where the different sets of data points cor-
respond to four different methods that were used to fit the x-ray data. In
all cases, the film structure factor was calculated using Eq. (2.40) with the
intensity given by Eq. (2.44).
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Figure 5.6: The lattice relaxations for the outer atomic layers for each
thickness N , where all values are in % t0. The different sets of data points
correspond to different fitting methods described in the text. The values
for Method A are the values calculated using the parameters for the data
set with coverage Θ = N AL. The points on the far right of each graph
represent the values averaged over N for all four methods, along with error
bars deduced from the spread in the results.
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Method A

The data for each coverage were fit separately with the lattice distor-
tions described by Eq. (4.34), the local charge gradient model. To reduce
the number of independent variables, parameters for the lattice distortion
model were assumed to be independent of N for any particular coverage,
but were allowed to be different for different coverages. This assumption is
valid for perfectly smooth films, but can be inaccurate for rough films. Since
these parameters do depend on thickness and the film roughness is not nec-
essarily negligible, the Debye-Waller parameter in Eq. (2.40) was replaced
with ζj factors, as in Eq. (2.39), but only for the Pb layers close to the film
boundaries. As a result, this method will be less reliable for extracting the
thickness dependence of the lattice distortions, especially for higher cover-
ages since they have the greatest degree of roughness. The results for the
two outermost Pb atomic layers at each film interface are shown in Fig. 5.6
as open circles, where the values for any particular thickness N are taken
from the data set whose coverage is N AL (with a distribution of pN values
peaked at that thickness).

Method B

The data for all 14 coverages were fit simultaneously using Eq. (4.34)
for the lattice distortions. With this method, the parameters for the lattice
distortion model were N -dependent and shared amongst all of the data
sets. The other parameters needed to fit the data — the pN values, Debye-
Waller factor, etc. — were separate for each coverage. The results for
the lattice relaxations of the outermost layers are shown in Fig. 5.6 as open
upright triangles. Compared to Method A, this method involved fewer fitting
parameters since no ζj factors were needed. Since the parameters of the
lattice distortion model were N -dependent, this method is more likely to
extract the thickness dependence of the interlayer relaxations.

Method C

As with Method B, all of the data sets for different coverages were fit
simultaneously, but with the lattice distortions calculated using the electro-
static force model, Eq. (4.40). The same number of parameters were used
in the fits as with Method B. The results from this method are shown with
open inverted triangles in Fig. 5.6.
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Method D

No model was used for the lattice distortions. Instead it was assumed
that any relaxations of the lattice would be limited to the atomic layers
closest to the interfaces. The two interlayer spacings closest to the substrate
and the vacuum (four total) were fit as free parameters and were allowed to
vary for different N . To keep the number of parameters reasonable, all 14
data sets for different coverages were fit simultaneously as with Methods B
and C, sharing the layer expansion parameters. The interlayer spacings for
the other Pb layers were assumed to be equal to a separate parameter, t,
which introduces one additional parameter per data set to the fit compared
to Methods B and C. The results from this fit are shown as open squares in
Fig. 5.6.

5.4 Discussion and Comparison with Other

Studies

All four methods of analysis can be justified on physical grounds as reason-
able models to describe the essential features of the system. They involve
different constraints on some aspects of the system and, in some cases, very
different numbers of fitting parameters, yet they all resulted in fits of compa-
rable quality (measured by χ2). This is a strong indication that the models
reflect the physical system. The spread in the results is an indication of the
standard error or level of confidence in the results. The black diamonds and
error bars at the right side of the panels in Fig. 5.6 show that, averaged
over the thickness range of study, the top layer spacing of the Pb film is
contracted by 8.0 ± 2.4% relative to the bulk, while the next layer spacing
is expanded by 2.2± 1.0%. These values are substantially larger than those
reported for bulk Pb(111) [87], but are closer to those resulting from recent
first-principles calculations [88]. The layer spacing closest to the Si substrate
is expanded by 5.8 ± 2.2%, and the next layer spacing is essentially bulk-
like to within ±1.5%. In addition to these general trends that are related to
Friedel oscillations associated with the film boundaries, the layer relaxations
exhibit quasibilayer oscillations as a function of film thickness that can be
attributed to confinement and interference effects.

Results of the fits are shown as solid curves in Figs. 5.3 and 5.4. The
fits reproduce the aforementioned half-order features very well, especially
compared to the example fits with no lattice distortions, shown as dotted
curves in Fig. 5.4. That being said, it was found that other solutions ex-
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isted with χ2 values only slightly larger than the best fits. Such solutions
primarily differed in the lattice relaxations for ∆t1,2 and ∆t2,3, the two in-
terlayer spacings closest to the substrate. All solutions exhibited strong
quasibilayer oscillations as a function of thickness; however, they differed in
where the crossover from even to odd occurs — i.e., the phase of the oscilla-
tions is weakly determined. For example, the turning point that is evident
at around N ≈ 17 in the data for ∆t1,2 in Fig. 5.6 was found at N ≈ 13 and
N ≈ 11 in two other solutions with comparable χ2 values as the best fit. All
solutions exhibited similar relaxation values for ∆tN−1,N and ∆tN−2,N−1,
the relaxations of the layers closest to the vacuum. The greater uncer-
tainty in the lattice distortions near the substrate may be due to interfacial
roughness from the underlying Si(111) substrate, whose step heights will be
incommensurate with the interlayer spacing of the Pb overlayers. However,
these errors are no larger than the spread of values determined based on the
four different methods of analysis.

In this study, the penetration depth of the x rays used greatly exceeded
the thicknesses of all the films studied, so the interference patterns in the
data are due to scattering from all the film overlayers. However, a technique
such as STM or HAS, with a short probing depth, will primarily measure
the step heights on the surface of the film (see for example Fig. 1.1). To
compare with the results of such studies, Fig. 5.7 shows the deviation of
the net film thicknesses from their ideal bulk values and the deduced step
heights as functions of N . Each thickness deviation value is the sum of
all the lattice distortions (i.e., the ∆tj,j+1 values) for any given N and the
step height values are defined as the difference between two net thicknesses
differing by 1 AL. The error bars indicate the spread in values from the
different fitting methods. These values show clear quasibilayer oscillations,
particularly for the smaller thicknesses. For larger thicknesses, the error bars
get progressively wider, commensurate with the increase in film roughness
as shown in Figs. 5.1 and 5.2.

It should be noted that the term “step height” as used here refers to the
vertical distances between the terrace heights of two thicknesses differing by
1 AL. The local step height encountered by an atom diffusing across the
surface of the sample may be different, since additional lattice distortions in
the regions very near to the step edges probably occur to minimize the local
strain and shear energies. That is, the diagram in Fig. 2.10 is not indicative
of the local region around a step edge, but rather a schematic showing how
the atomic layers in the (terraces of) different regions of thickness may be
misaligned. Furthermore, lateral Friedel oscillations originating from the
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Figure 5.7: (a) The net thicknesses calculated from the lattice distortions.
Values are the deviation from the ideal thickness, Nt0, in % t0. Error bars
are representative of the spread in values from the different fitting methods
described in the text. (b) The deduced step heights at the surface, defined
as the difference between every two adjacent points in (a).

step edges have been observed in the electron density [89, 90], which can
also affect the lattice structure. However, such edge effects will be limited
to a relatively local region (within a few lattice spacings) near the step edges.
Since HAS is a scattering technique, it measures the statistical average of
the scattering from the atomic planes, and STM studies generally measure
the heights of atomic terraces over an extended range. Thus, edge effects
can be neglected in such comparisons.

The oscillations in Fig. 5.7(b) are consistent with the STM results shown
in Fig. 1.1, where it should be noted that the N values differ from those
presented here by 1 AL since we have included the wetting layer in N .
However, the amplitude of the oscillations in Fig. 5.7 is much smaller than
that in Fig. 1.1(b), which may be partly attributable to the fact that STM
measures the electron density at the surface, which may not reflect the true
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positions of the atomic cores. Similarly, our results are also consistent with
those found in the HAS study of Ref. 18.

5.5 Summary

This chapter presented surface x-ray diffraction results of the growth and
layer structure (strain) of Pb/Si(111) films with thicknesses of 6–19 AL.
At 110 K the system is found to follow a metastable layer-by-layer growth
mode with increasing roughness. The extended x-ray reflectivity profiles
were found to have distinctive half-order features present that are indicative
of a quasibilayer periodicity to the lattice structure. To describe the lattice
distortions in the context of QSE, the free-electron models developed in
Chapter 4 are used that take into account the formation of quantum well
states in the film and describe the Friedel-like oscillations in the electronic
charge density of the film. The free-electron models are found to explain
the quasibilayer lattice distortions of the film and enable a detailed fit of the
experimental data.

Extended x-ray reflectivity profiles at integer coverages were obtained
and analyzed to reveal the thickness dependence of the structural properties
of the film. Quasibilayer oscillations are also observed in the outermost
lattice relaxations as a function of thickness, similar to oscillations seen in
other physical properties of the films due to QSE. Finally, the deviations
from the ideal film thicknesses are deduced and compared with previous
STM and HAS studies, where the present results are found to qualitatively
agree, albeit with a smaller amplitude of oscillation. It can be concluded
that quantum confinement has important effects on the physical structure
of a nanoscale film.
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6 Surface Energy of
Pb/Si(111) Films

6.1 Experiment Overview

The relative stability of thin metal films has been shown to exhibit strong
variations as a function of thickness that have been attributed to elec-
tronic contributions to the surface energy [26, 41, 44]. In addition, for cer-
tain temperature ranges, some systems exhibit a peculiar film morphology
where steep-sided, flat-topped islands of uniform height form on the sur-
face (Fig. 1.2). Using x-ray diffraction and scanning tunneling spectroscopy,
the formation of these “nanomesas” has been correlated with the electronic
structure of the films [15, 19, 20, 22–26]. This chapter presents a study of
the morphological evolution of Pb films as a function of temperature. This
evolution is explained in terms of QSE in the surface energy of the films, for
which quantitative empirical information is obtained [84,91].

The experiment is a study of the structural evolution of smooth Pb
films grown on Si(111) at 110 K as they are annealed to a state of local
equilibrium near room temperature. By frequently interrupting the anneal-
ing process and examining the film morphology, the system is effectively
observed exploring the local energy landscape as it evolves. Detailed discus-
sions are presented for two different samples, one with an initial thickness
that corresponds to a relatively stable configuration (low surface energy),
and one with an initial thickness that is relatively unstable (high surface en-
ergy). The structural evolution and thermal stability of the two films differ
markedly; however, analysis of their final quasi-equilibrium states produces
the same form for the surface energy, as expected. The annealing behavior of
the films also reveals an additional effect; namely, after the initially smooth
film breaks up, further annealing results in the formation of increasingly
taller islands. This effect is also attributed to quantum electronic effects.
First principles calculations show that the most energetically favored con-
figuration of the system consists of a single layer wetting the substrate (see
Fig. 1.3); due to the initial volume of deposited film material, to conserve
mass the film morphology thus phase separates into surface regions covered
only by a wetting layer, which has the lowest surface energy, and regions
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with islands of preferred heights. As the annealing temperature increases,
the system has more thermal energy with which to rearrange the atoms on
the surface, resulting in the formation of taller islands and a corresponding
increase in the area covered by the wetting layer.

As in the experiment of Chapter 5, Pb films were grown in situ at 110 K
using molecular beam epitaxy at a rate of 0.84 Å/min. At this tempera-
ture the system follows a metastable layer-by-layer growth mode that allows
for monitoring of the coverage of the films during deposition by collecting
the reflected x-ray intensity at the lowest-order out-of-phase condition for
Pb(111), which exhibits layer-by-layer oscillations as described in Sec. 5.2.
This technique allows for smooth films of precise coverage to be grown. After
deposition, the films were slowly annealed to progressively higher temper-
atures in increments of approximately 5–10 K. After reaching each desired
annealing temperature, the sample was quenched back to 110 K for measure-
ment of the specular extended x-ray reflectivity, which was obtained using
the ridge scan method described in Sec. 3.6.

6.2 Extended X-Ray Reflectivity Analysis

Figures 6.1 and 6.2 show extended x-ray reflectivity data (points) for two
samples with initial coverages of 6 AL and 11 AL, respectively. The reflec-
tivity profiles measured after annealing to the temperatures indicated are
shown in progressive order starting from the base temperature at the bot-
tom. Although data was collected every 5–10 K, only select temperatures
are shown to illustrate the major morphological changes. The sharp peaks
at l = 3, 9, and 12 are the Si(111), (333), and (444) Bragg peaks, respec-
tively, and the interference fringes in-between are due to the Pb overlayers.
The broader peaks at l ≈ 3.3, 6.6, and 9.9 are the Pb(111), (222), and (333)
Bragg peaks, respectively. The number and spacing of the fringes between
these peaks are an indication of the center of the thickness distribution of the
film and its roughness. The reflectivity profiles for smooth films exhibit well-
defined fringes with deep minima, similar to the N -slit interference function
shown in Fig. 2.9. In such a profile, the number of fringes is equal to the
number of atomic layers in the film minus two. For example, the four well-
defined fringes evident between the Pb Bragg peaks in the 110 K data in
Fig. 6.1 are indicative of a smooth film with a thickness of 6 AL. Thus, the
appearance of additional fringes at intermediate temperatures indicates that
Pb islands with larger thicknesses form on the surface. Detailed analysis of
the data indicates that the average island height tends to get larger. That
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Figure 6.1: Extended x-ray reflectivity data (points) for a sample with a
coverage of 6 AL after annealing to the temperatures indicated. Fits are
shown as solid curves.
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Figure 6.2: Extended x-ray reflectivity data (points) for a sample with a
coverage of 11 AL after annealing to the temperatures indicated. Fits are
shown as solid curves.
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is, the smooth film at 110 K breaks up into nanostructures that get higher
with increasing temperature. As discussed below, this curious behavior is
related to a tendency for the system to favor the formation of surface regions
covered by only a single wetting layer and oscillations in the surface energy
similar to those calculated in Sec. 4.5 that favor the formation of islands of
specific thicknesses.

The diminished fringes at the highest annealing temperatures indicate
a relatively rough film. A broad distribution of thicknesses present on the
surface should result in a relatively featureless reflectivity profile in-between
the Pb Bragg peaks. However, in both sets of data small oscillations are
evident roughly halfway between these peaks. Since these features occur
close to the half-order position for Pb, they are indicative of a bilayer or
quasibilayer periodicity in the film structure. In Chapter 5, enhanced half-
order features due to quasibilayer distortions in the film layer structure
were observed in smooth Pb films. However, as is shown below, due to film
roughness such lattice distortions do not explain the half-order oscillations
in this case. Rather, they can be attributed to a bilayer or quasibilayer
periodicity in the thickness distribution pN .

To illustrate the information content of these near-half-order oscillations
and to show this effect is not due to lattice distortions, simulated reflectivity
profiles were calculated for various thickness distributions with the atomic
layer positions calculated using the local density gradient model of Sec. 4.4.2,
which was found to accurately describe the lattice structure of Pb films in
Chapter 5. Figure 6.3(a) shows the reflectivity for a rough sample with a
Gaussian distribution of thicknesses as shown in Fig. 6.4(a). Even with the
presence of quasibilayer lattice distortions, the broad distribution of thick-
nesses in the film obscures any half-order feature in the curve of Fig. 6.3(a).
However, half-order oscillations are present in the simulated reflectivity of
a sample that has a preference for either even or odd thicknesses, as shown
in Fig. 6.3(b) with the distribution used shown in Fig. 6.4(b). However, the
positioning of the oscillations in this case, exactly centered at the half-order
position of l ≈ 5, does not coincide with the positioning of the oscillations in
the experimental data shown at the bottom of Fig. 6.3 (which is the 280 K
data from Fig. 6.2), as is highlighted with the vertical dotted line. The
shifting of the near-half-order oscillations observed can be reproduced by
modifying the bilayer distribution of thicknesses so that the preference for
even or odd thicknesses switches periodically, as shown in Fig. 6.4(c). Such
an effect is expected due to the beating patterns found in the surface energy
in Sec. 4.5. The corresponding reflectivity for such a simulation is shown in
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Figure 6.3: Simulations showing that the near-half-order oscillations in the re-
flectivity of samples annealed to high temperatures contain a significant amount
of information. The corresponding thickness distributions are shown in Fig. 6.4.
(a) The reflectivity from a surface whose thickness distribution follows a simple
Gaussian. There are no oscillations in the reflectivity near the half-order point for
the film overlayers. (b) A bilayer preference is added to the thickness distribution
which results in oscillations at the half-order point, l ≈ 5. (c) Phase reversal (even-
odd crossover) is added to the bilayer distribution with the periodicity expected
(every 9 AL). The oscillations are shifted slightly from the exact half-order posi-
tion, coinciding more with those in the experimental data shown at the bottom, as
highlighted with the vertical dotted line.
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Figure 6.4: The thickness distributions used in the simulations of Fig. 6.3. (a)
A simple Gaussian distribution. (b) A dual-Gaussian distribution where the upper
envelope dictates the values for odd N . (c) The same dual-Gaussian distribution
with an even-odd crossover every 9 AL, the expected period of the beating function
in the surface energy. (d) The distribution resulting from a fit to the experimental
data in Fig. 6.3(d), starting from the distribution in (c). In all cases, the coverage
of the film, Eq. (2.43), is constrained to 11 AL (the coverage of the film whose data
is shown) and the wetting layer, p1, was adjusted such that the surface formed a
closed film [Eq. (2.42)].
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Fig. 6.3(c), where it can be seen that the near-half-order oscillations are now
in phase with those in the data, although they are not reproduced exactly.
By letting the pN be independent parameters and using the values shown
in Fig. 6.4(c) as an initial condition, an accurate fit to the data can be ob-
tained, the results of which are shown in Fig. 6.4(d). Thus, the presence
of the near-half-order oscillations in the data and their position relative to
the Pb Bragg peaks is indicative of quasibilayer oscillations in the thickness
distribution.

Detailed information on the surface morphology was obtained by fitting
each reflectivity profile using Eq. (2.47) to obtain the thickness distribution
present on the surface, {pN}. Each pN parameter was ultimately fit as
an independent parameter except for p1, the coverage of the wetting layer,
which was constrained such that Eq. (2.42) was satisfied. At the higher
annealing temperatures, when the distribution of thicknesses present on the
surface is broad, the number of non-zero pN values needed to describe the
surface morphology is large. Local minima in parameter space were avoided
by starting the fit for each temperature (except the first) from the best fit
of the previous temperature, effectively following the film morphology as it
evolves. Due to the large number of independent parameters used in some
of the fits, the sensitivity of the fits to any individual pN value was weak;
however, as demonstrated with Figs. 6.3 and 6.4, the overall distribution
of pN values is well-determined by the information contained in the near-
half-order oscillations in the x-ray reflectivity profiles. As a consequence,
given the confidence in the form of the thickness distribution demonstrated
above, the relative errors are estimated to be within 10% of each pN value.
The partial coherence factor in Eq. (2.47) was found to be near unity (all
coherent scattering) for the lower annealing temperatures and on the order
of 0.5 for the highest temperatures, consistent with a surface morphology
that consists of many different height nanomesas that each extend laterally
for significant distances.

6.3 Evolution of Film Morphology with

Annealing

The thickness distributions determined from the fits to the reflectivity data
in Fig. 6.1 are shown in Fig. 6.5. After deposition at 110 K, the thickness
distribution is sharply peaked about N = 6, corresponding to a very smooth
film with a rms roughness of about 1.3 Å. Upon annealing, no discernable
changes in the reflectivity profile are observed until 232 K, at which point
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regions of 8 and 10 AL start to form. These regions then become more
prevalent by 250 K and the residual 7 AL region has disappeared, which is a
less-stable thickness. The dominant thickness of the film is still 6 AL up to
266 K, though, at which point the distribution has broadened significantly.
At 274 K, the preference for 6 AL due to the initial condition has disappeared
and the surface has presumably reached a state of local equilibrium in which
each thickness N is in equilibrium with its neighboring thicknesses N ±
1. The rms roughness at this temperature is about 18 Å. The thickness
distributions show a clear preference for certain thicknesses over others with
a quasibilayer periodicity, which is expected because of the near-half-order
oscillations present in the extended x-ray reflectivity profiles, as discussed in
the last section. Two of the expected even-odd crossover points are evident
as well at N ≈ 5 and N ≈ 14.

Phenomenologically, the fact that the thickness distribution gets broader
after annealing is actually expected when one considers that the system fol-
lows a Stranski-Krastanov growth mode at room temperature, where islands
form on top of a single wetting layer. However, in this case the distribution
of thicknesses not only broadens, but its center moves upwards in N . That
is, at lower temperatures, the distributions in Fig. 6.5 are peaked about the
initial thickness of 6 AL, but at the final temperature, the average structure
height above the wetting layer is about 12 AL, which implies that on aver-
age the surface features are getting higher with increasing temperature. To
conserve the amount of Pb on the surface, the initially smooth film must
break up into islands separated by increasingly wide regions of the surface
covered only by a wetting layer. The amount of the surface covered by only
a wetting layer, p1, found in our analysis is shown in Fig. 6.6. It increases
monotonically with the annealing temperature. The most stable configura-
tion of the system is to maximize the coverage of the wetting layer, which is
supported by first-principles calculations that show a deep global minimum
at N = 1 in the surface energy (see Fig. 1.3). However, the system cannot
fully maximize the coverage of the bare wetting layer due to kinetic limi-
tations and thermal fluctuations that will tend to roughen the surface and
favor a reasonable nanostructure height. The combination of these effects
explains the annealing behavior observed.

In contrast to the 6 AL film, whose initial thickness persisted through
most of the annealing process, indicating that this thickness is preferred,
films with initial thicknesses that are not preferred exhibit a qualitatively
distinct behavior. Figure 6.7 shows the thickness distributions for the film
with an initial coverage of 11 AL (Fig. 6.2) and its morphological changes
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Figure 6.5: The coverage of different thicknesses present on the sample surface
for each corresponding curve in Fig. 6.1, with the annealing temperatures indi-
cated. The coverage values were determined via a fit using a model described in
the text. The surface evolution is shown to evolve from a very smooth film at 110 K
through various metastable “preferred thickness” states before reaching a state of
local equilibrium. The preference of certain thicknesses over others corresponds to
quasibilayer oscillations in the surface energy. The dotted line through the 274 K
data is the result of applying a binomial filtering algorithm to the values for an
analysis of the surface energy.
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Figure 6.6: The amount of the 6 AL sample surface covered only by a
single wetting layer increases with temperature. The surface energy has a
deep global minimum at N = 1 that results in the wetting layer being the
most stable configuration of the system.

upon annealing to the indicated temperatures. As with the 6 AL film, the
initial distribution is sharply peaked about the initial thickness, consistent
with a layer-by-layer growth mode. However, in this case the initially smooth
film (3.2 Å rms roughness) begins to break up at a much lower temperature
of 174 K. By 200 K, the coverage of the initial 11 AL has largely disappeared
and the film has bifurcated into the neighboring thicknesses of 10 and 12 AL,
both of which are more stable than 11 AL. At 253 K, the surface is dominated
by regions of 12 AL, resulting from phase separation of the system into a
state corresponding to a local minimum in the surface energy at N = 12
and a state in the global minimum at N = 1. It is this temperature range
in which uniform height nanomesas have been observed in many microscopy
studies [15, 19, 20, 22–25]. Annealing to higher temperatures results in a
broadening of the thickness distribution until at 280 K, when the residual
preference for 12 AL from the uniform height phase has disappeared, the film
has reached local equilibrium (28 Å rms roughness). Since we started with
a thicker film, there are more Pb atoms to rearrange and nanostructures
of larger height are able to form on the surface. The final distribution
of thicknesses is correspondingly much broader and has a higher average
structure height above the wetting layer of approximately 18 AL. As a result,
the oscillations in the distribution, which are indicative of variations in the
relative stability of different thicknesses, are present over a wider range,
allowing a more comprehensive analysis of the surface energy.
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Figure 6.7: Evolution of the structure of the 11 AL film after annealing to the tem-
peratures indicated, obtained from fits to the extended reflectivity data in Fig. 6.2.
In contrast to the 6 AL film, which is a stable thickness, this film bifurcates at
the comparatively low temperature of 174 K. Due to the higher volume (coverage)
of Pb in the film, the final distribution of thicknesses is broader and peaked at a
greater thickness than that in Fig. 6.5, providing information about the surface
energy over a broader range of thicknesses.
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6.4 Surface Energy

The variations in the thickness distributions of Figs. 6.5 and 6.7 are indica-
tive of a relative preference for certain thicknesses over others. An exper-
imental measure of the relative stability of a thickness can be obtained by
comparing the fractional surface area it covers with that of its neighbors

pN − pN−1 + pN+1

2
= −1

2
p′′N (6.1)

where p′′N is the discrete second derivative of pN . That is, thicknesses for
which the local curvature of pN is negative (p′′N < 0) are relatively stable,
since they cover more of the sample surface compared with their neighboring
thicknesses. Conversely, if the local curvature of pN is positive (p′′N > 0), the
thickness N is relatively unstable since the system prefers to form regions
with thicknesses of N±1 over N . The values of p′′N for the highest annealing
temperature data in Figs. 6.5 and 6.7 are shown as solid circles in Figs. 6.8(a)
and 6.8(b), respectively. In both cases, quasibilayer oscillations about p′′N =
0 are evident, a reflection of variations in the relative stability of different
thicknesses. As mentioned above, the 11 AL sample provides information
over a wider range of thicknesses than the 6 AL sample due to its greater
initial thickness.

This effect will manifest itself as corresponding variations in the surface
energy, similar to those seen in the free-electron calculations of Sec. 4.5. We
can extract empirical information about the surface energy by relating it to
the pN parameters, which should follow a Boltzmann distribution

pN = X e−ES(N)/kBT (6.2)

where kB is Boltzmann’s constant and T is taken to be the annealing temper-
ature. In the case of a system that is in global thermodynamic equilibrium,
X is simply a constant of proportionality. However, in the present case it
is only assumed that the system is in a state of local equilibrium, in which
case X is a slowly varying function of N . Thus, X will depend on a variety
of factors, including the film’s annealing history. To remove this ill-defined
function from the analysis, the self-normalized local variations in pN are
considered instead:

δpN ≡ pN − pN

pN

(6.3)

where pN is a local average of pN . Such a quantity corresponds to the
smoothly varying background underlying the oscillations in the pN values
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Figure 6.8: The discrete second derivative of the pN values for the 274 K and 280 K
data in Figs. 6.5 and 6.7 are shown as solid circles in (a) and (b), respectively. Two-
parameter fits to these data as described in the text are shown as open circles, which
accurately reproduce the quasibilayer oscillations and envelope beating functions.
(c) The surface energy as calculated using Eq. (4.52) with the average parameters
from the two fits in (a) and (b). Dashed lines show the beating envelopes for the
experimental values in (a) and (b) and the calculated values in (c). Vertical dotted
lines indicate the nodes in the beating envelope of the surface energy in (c), which
correspond closely to the nodes in (a) and (b).
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of Figs. 6.5 and 6.7. As long as pN is calculated using only a small local set
of pN values, X can be regarded as being approximately constant over this
set and δpN is independent of X . A reasonable method for calculating the
local average is to use a binomial filtering algorithm [92]

pN =
pN−1 + 2pN + pN+1

4
. (6.4)

The pN values resulting from the application of this algorithm to the top pN

distributions in Figs. 6.5 and 6.7 are shown as dotted curves, which show
that it indeed produces smooth curves. Using this algorithm also has the
additional benefit that δpN is simply related to the discrete second derivative
of pN

δpN =
−p′′N
4pN

. (6.5)

The empirical discrete second derivative values in Figs. 6.8(a) and 6.8(b)
were fit using the function

(
p′′N

)
theory

= −4 (pN )expt (δpN )theory , (6.6)

where the theoretical version of δpN is

(δpN )theory =
4pN

pN−1 + 2pN + pN+1
− 1, (6.7)

with the pN values calculated using Eq. (6.2) and the sinusoidal approxima-
tion for the surface energy found from the free-electron model calculation,
Eq. (4.52). Note that when this form for ES is used, the constant offset in
Eq. (4.52), B, cancels from Eq. (6.7). Due to a significant covariance found
between the parameters A and α, where the adjustment of one parameter
could be largely compensated for by a complementary adjustment of the
other, the value for the decay exponent found in Sec. 4.5, α = 1.77, was
fixed in the fits. The analysis was found to be relatively insensitive to the
specific value of the decay exponent, as long as it was between 0.9 < α < 2.0.
Similar fits with α = 1 yield comparable surface energies that differ by less
than 3 meV for most of the thickness range available. The Fermi wave vec-
tor was taken to be the empirical value for bulk Pb(111), kF = 1.59 Å−1.
Thus, only two adjustable parameters were used in the fits: A and φ. The
fitted value of φ was (0.49 ± 0.01)π for both fits and the fitted value of A

was 1.0±0.3 eV for the 6 AL sample and 1.3±0.2 eV for the 11 AL sample.
The surface energy shown in Fig. 6.8(c) was calculated using the average of
these two values.
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6.5 Discussion

The annealing behavior of the two films is consistent with the surface energy
shown in Fig. 6.8(c). At low temperatures, the system is kinetically limited
and can therefore be found in a metastable state where the predominant
thickness is energetically unfavorable, as with the 11 AL film in this study.
However, as the film is annealed and given more thermal energy, the unstable
11 AL thickness easily bifurcates into the energetically preferred thicknesses
of 10 and 12 AL. Upon further annealing, in some cases the film coalesces
into a state where the surface is mostly covered by islands of uniform height.
For the initial 11 AL film, the preferred thickness of the islands (nanomesas)
is 12 AL, which is actually indicated to have a higher surface energy than
10 AL in Fig. 6.8(c). However, the system is prevented from forming uniform
10 AL islands since this thickness is smaller than the initial thickness, and
the deep minimum in the surface energy for N = 1 favors the formation of
surface regions covered only by a single wetting layer. As a consequence,
a state that consists of 12 AL islands separated by regions of the surface
covered only by the wetting layer is favored over a state in which both 10
and 12 AL islands are present.

In contrast, for a film whose initial predominant thickness is more stable,
like the 6 AL film in this study, the surface morphology remains unchanged
up to a much higher temperature. When it does begin to evolve, the initial
6 AL portion of the film is mostly retained while the unstable thicknesses
(e.g., 7 AL) transform into higher stable thicknesses. The coverage of the
initial thickness in this case only slowly decays with increasing temperature
until local equilibrium is attained. We have collected similar data for other
initial thicknesses, both preferred and not preferred, the annealing behavior
of which is consistent with the results presented here.

The overall phase shift of the surface energy and its envelope beating
function depend only on the boundary conditions at the film interfaces. As
such, the nodal points in the surface energy envelope (the points where even-
odd crossover occurs) should be found in the same places for the two data
sets, which is indeed the case as seen in Fig. 6.8. Due to the symmetric
boundary conditions used in the free-electron model of Sec. 4.5, the phase
shift in the surface energy calculated from it is different from the experi-
mentally determined phase shift, as one would expect. The amplitudes of
oscillation found experimentally appear to be significantly greater than the
free-electron amplitude; however, they are consistent with the amplitude
found in the first-principles calculations shown in Fig. 1.3. The nodes in the
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beating envelope occur with the periodicity expected given the bulk Fermi
energy, although there is a slight discrepancy for the first node at N ≈ 5 (see
dotted vertical lines in Fig. 6.8). In this thickness region, interface effects are
more significant and the free-electron approximation of the surface energy,
Eq. (4.52), becomes less accurate. However, the empirical stability data
for the lower N values in Figs. 6.8(a) and (b) is supported by independent
photoemission measurements [41], indicating that the data are reliable.

6.6 Summary

This chapter presented temperature-dependent x-ray diffraction data show-
ing the morphological evolution of Pb films grown on Si(111) substrates.
The films were grown at 110 K, at which temperature the system follows a
metastable layer-by-layer growth mode. By annealing the films to around
280 K in increments of 5–10 K, the surface morphology was observed passing
through various metastable states before reaching a roughened state char-
acterized by local equilibrium. The annealing behavior of two films with
different initial thicknesses clearly shows that certain film thicknesses are
more stable than others. A film with an initial thickness that is relatively
stable (6 AL) remained intact up until approximately 230 K, at which point
it began to roughen and explore the broader energy landscape. In contrast,
a film with an initial thickness that is relatively unstable (11 AL) began
to break up at the comparatively low temperature of 170–200 K, at which
point it decomposed (phase separated) into regions of thicknesses with lower
surface energies (islands dominated by a single height, 12 AL, surrounded
by regions covered by the wetting layer only). This phenomenon of preferred
heights can be explained by the phase separation of the system into a state
corresponding to a local minimum in the surface energy (the uniform-height
islands) and a state in the global minimum (the wetting layer).

In Sec. 4.5, the oscillations in the free-electron surface energy were found
to closely follow a damped sinusoidal form with a wavelength of λF /2. This
result is used to relate the details of the broad thickness distributions of the
annealed films to their surface energy. These results draw a direct empirical
link between the formation of quantized electronic states due to confinement
of the itinerant electrons to a metal film (QSE) and the relative stability of
different film thicknesses, which can exhibit large variations for sizes differing
by as little as a single atomic layer. Understanding such effects is critical
for the engineering of metallic nanoscale devices.
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7 Conclusions and Outlook

This dissertation has presented research on size-dependent quantum elec-
tronic effects in ultrathin Pb/Si(111) films. These quantum size effects are
investigated both theoretically with models based on a confined free-electron
gas as well as experimentally with surface x-ray diffraction. The theoretical
models predict quasibilayer variations both in the atomic-layer structure of
the films as well as their surface energy as a function of thickness. These
predictions are subsequently confirmed experimentally. In a layer-resolved
study of smooth films of thicknesses 6–19 AL, distinctive features appear
in the extended x-ray reflectivity spectra indicative of lattice distortions in
the films with a quasibilayer superperiodicity. Detailed analysis reveals that
these lattice distortions vary for different thickness films, again with a quasi-
bilayer periodicity. In another experiment, the energetics of the system is
investigated by annealing initially smooth Pb films to progressively higher
temperatures, which causes the metastable films to break up into different
height nanostructures. The structural evolution of these film nanostructures
is observed throughout the annealing process, which reveals quasibilayer
variations in the relative stability of the film structures as a function of
height (film thickness). These variations are directly linked to oscillations
in the surface energy similar to those calculated with the theoretical mod-
els. Together, these studies have determined that the effects of quantum
confinement on atomic-scale metal structures can be dramatic and have a
significant impact both on the lattice structure and the thermal stability of
such nanostructures and films.

As always, there are many more directions in which this research could
continue. For example, it would be interesting to see if the effects described
in this work are also present in ultrathin liquid metal films. If a metal film
with a thickness in the quantum regime could be prepared in the liquid
state on a semiconductor substrate, then the properties of the film could
conceivably be examined as a continuous function of thickness, which is in
contrast with the integer number of atomic layers to which one is limited
with epitaxial films. Another avenue of research that is currently being pur-
sued is a real-time reflectivity study of the growth and annealing behaviors

133



7. CONCLUSIONS AND OUTLOOK

of Pb/Si(111) films. In such a study, the reflectivity rod is measured by
scanning the incident angle of the x rays while a range of exiting beams
is collected simultaneously with an area detector such as a charge-coupled
device (CCD). With this method, the rod can be measured in ∼2 min, an-
other order-of-magnitude improvement over the ridge scan method outlined
in Sec. 3.6.2. Using this technique, real-time studies can be readily per-
formed of the growth of these films at different growth temperatures and/or
growth rates. By exploring the temperature/growth-rate parameter space,
one can deduce information on the kinetic barriers that are involved in the
peculiar morphology that these films exhibit. In addition, the quantum size
effects described here are found in a variety of other properties of metal
nanostructures, the details of which remain unexplored in many cases. An
excellent example of one such property is the superconducting transition
temperature. Preliminary results from other research groups [7, 8] appear
to show variations in Tc for thin Pb films with a bilayer periodicity, similar
to the those observed in the surface energy reported here. However, these
data are not comprehensive and many details of the effect remain unknown
or unexplored.

In conclusion, it is clear that quantum electronic effects play a significant
role in the physical characteristics of nanoscale metallic structures. These
properties can deviate significant from their bulk counterparts. As the size
of technological devices settles more firmly in the quantum regime, these
size-dependent effects will be of utmost importance.
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