Photoemission Studies of the Electronic Structure and Properties of Thin Lead Films

- Introduction
- Growth mode of Pb/Si(111)
- Bilayer Electronic Oscillations
- Dispersion in Pb/Si(111) films
- Thermal Stability of Pb/Si(111) films

Why Study Thin Films?

Physics reasons

- •Confined systems
- •Materials interaction, coupling
- •Growth

Why Study Thin Films?

Practical reasons

•What happens as electronics get smaller?

•Thermal stability

First transistor Newer transistor

Our Experiment

- Grow Pb films on 100 K Pb terminated Si with Molecular Beam Epitaxy (MBE).
- 2. Study sample with photoemission (photons in, electrons out)

Pb/Si Previous Growth Work - STM

Si

•200 K growth
•Flat islands
•Preferred heights Hupalo et al., PRB 2001 •77 K growth
•Flat surface islands
(uneven substrate)
Altfeder, Narayanamurti, and Chen, PRL 2002

subsurface steps

Quantum Well States

- Electron
 confined in
 film ⇒
 Particle in a
 box states
- Need close to layer-bylayer growth to see states.

Pb/Si Layer by Layer Growth

- Layer by layer growth despite large lattice mismatch
- Odd ML→sharp, intense peaks
 Even ML→broad shallow peaks

Film Thickness Determination

- Deposition time between 1st and 3rd major peak is 4 ML
- Seconds/ML gives total thickness of film
- Initial substrate α or β phase

Quantum Well Confinement

- Sharp peaks Good confinement between Si VBM and Fermi Level
- Broad peaks Partial confinement below Si VBM

Film Electronic Structure

Effective Mass Refresher

• Curvature of energy band

- Curved band \Rightarrow low m*
- Flat band \Rightarrow high m*

Effective Mass Measurements

- Theory good at high BE
 - Aberrant effective mass near Si VBM

Dispersion Measurement – 5ML

Dispersion Measurement – 5ML

Si Band Edge Effect - Anticrossing

New Anticrossing Observations

8 ML Ag/Ge(111) S.-J. Tang et al. PRL 96, 216804

Measuring Thermal Stability

Thermal Stability

- 5-9 ML has bilayer oscillation as predicted
- Low ML unusually unstable

Calculation

• $S = 2^{nd}$ derivative of Surface Energy

$$S = \frac{E(N+1) + E(N-1)}{2} - E(N)$$

• Si lattice is compressed to match Pb lattice

Next: Electron-Phonon Coupling

Summary

- Atomically uniform films
- Bilayer electronic oscillations
- Quantum well sub-band dispersion
- Thermal stability of films shows even-odd oscillations

