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Absolute determination of film thickness from photoemission: Application
to atomically uniform films of Pb on Si
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We report on a method to unequivocally determine the thickness of a film in terms of atomic layers,
as demonstrated by a study of Pb growth ofi$1). Deposition at low temperatures on a pretreated

Si  substrate results in atomically uniform Pb films. These films exhibit large
monolayer-by-monolayer variations in electronic structure as observed by angle-resolved
photoemission. Intense and sharp peaks derived from quantum-well states are observed for odd film
thicknesse®=5, 7, and 9 monolayers, but not for the adjacent even film thickné&sds6, 8, and

10 monolayers. The dramatic differences facilitate an accurate calibration of the amount of Pb
deposited. €©2004 American Institute of PhysidPDOl: 10.1063/1.1783019

The continued miniaturization of Si-based electronic de-  As seen in Fig. 1, the intensity of the quantum-well peak
vices is pushing component layer thicknesses toward th#hat is a maximum aN=5 diminishes as the film thickness
nanoscale. A critical hurdle along this path is atomistic fluc-increases from 5.0 through 5.3, 5.5, and 5.8 NAt6.0, this
tuation. Such thin fiims can suffer substantial propertypeak disappears, leaving behind a spectrum with little emis-
changes if the layer thickness is changed by just one atomigon intensity. Further increasing the film thickness brings
layer or if there is roughness at the monolayer level. Theout a peak at a somewhat lower binding energy, which maxi-
effect is generally on the order of Il whereN is the thick- ~ Mizes atN=7. The fact that théN=6 spectrum shows little
ness of the film in terms of monolayefisIL). At the nanos- €mission at positions corresponding to the5 and 7 peaks
cale, 1N can be as large as 20%, and the consequences Cgp_,gicates t'hat the film thickness is uniformly 6 ML. Any sig-
be severe or even catastrophic for device performance. ExaBfficant mixture ofN=5 and 7 patches or domains would

control of layer thickness or atomic uniformity is thus a criti- N@ve given rise to peaks at those positions. The continued
cal issue. In this work, we show that Pb deposition onreduction of theN=5 peak for thicknesses betwelr5 and

Si(111) at 100 K can lead to atomically uniform thin films © SImply means that the area covered by 5 ML is decreasing,

; - ; : hile the area covered by 6 ML is increasing. Likewise, the
provided that the Si substrate is pretreated appropriately ang e . g ) >
we describe a technigue to precisely determine the thicknescsontlnued increase of thé=7 peak for film thicknesses be-

of a film. The resulting films support quantum-well statesyom.j N:? thr?ugh 7 reflects tr&ebcontmued mhcrease of thef
due to electron confinement by the band gap in the Si su portion of surface area covered by 7 ML at the expense o

_ he area covered by 6 ML. These results establish that the
strate and the Pb-vacuum barriétA measurement of such y

tates b | ved phot o | ¢ films are atomically uniform to within a few percent when
states Dy angle-resolved photoemission reveals a quantuffl, coverages equal integer numbers of monolayers.

electronic structure that varies substantially as the film thick- 11,4 appearance of intense peaks for ddcesults from

ness undergoes monolayer increments and exactly detgfe interplay of the Pb band structure and the Si band gap.

mines the film thickness. o From data taken over a wide thickness range, it is concluded
Our angle-resolved photoemission data was taken at the

Synchrotron Radiation Center in Stoughton, Wisconsin, with
a normal-emission geometry using a Scienta analyzer. The

Pb films were prepared by sequential incremental deposition. N e 2’2 N
Three major peaks, at binding energies of 0.40, 0.26, and '

0.15 eV below the Fermi level, attain their maximum inten-

sities at film thicknesses dN=5, 7, and 9, respectively, 53 [T~ 6.0

while no such peaks are observed at the even layer thick-
nesses ofN=6 and 8 in the same energy range. Selected
spectra for coverages fro=5 to 7 are shown in Fig. 1 to
illustrate the dramatic variations in spectral lineshape. These
peaks represent quantum-well states formed by confinement
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No such quantum-well states exist fd=6 and 8, as will be

explained below. FIG. 1. The line scans show the photoemission intensity as a function of
binding energy relative to the Fermi level for various Pb coverdges
terms of monolayers. Quantum-well peaks are fully developed=& and
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that the lower edge of the Si band gép.12 eV lies at Coverage above o Phase (ML)
0.5 eV below the Fermi level. Therefore, electrons in the Pb 4 5 6 7 8
film with binding energies within 0.5 eV of the Fermi level ] T
are confined, giving rise to sharp and intense quantum-well | |
peaks. Electrons at higher binding energies are not confined. | | |
Nevertheless, partial reflection at the Pb—Si boundary can | |
give rise to resonances which appear in photoemission as T\ | | I
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weak and broad peaks. Further evidence for the confinement
edge at 0.5 eV is seen in the line scan of the pedk=h in
Fig. 1. This peak, with a binding energy very close to the
confinement edge, is asymmetric. Its higher binding energy Coverage above p Phase (ML)
side is substantially broader because this portion of the spec- 5 6 7 8 9
tral weight lies outside of the confinement range. A detailed ' ' ' |I
examination of the peaks at various thicknesses establishes | |
A
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that the confinement edge is at 0.5 eV below the Fermi level.
From this, the Schottky barrier height is calculated to be
about 0.6 e\*° First-principle calculations of quantum-well
states have been performed for freestanding Pb filfise
results are in close agreement with our measured peak posi-
tions if the theoretical values are lowered by 0.2—-0.3 eV.
These small differences can be attributed to boundary ef-fec'ﬁf‘lG. 2. Major quantum-well peak intensities measured as a function Pb
caused by a phase shift introduced by the Pb—Si inteffacedeposition time above an phase substrat@op pane) and ag phase sub-
The same analysis shows that within the 0.5 eV confinemerstrate(bottom panel The vertical dashed lines indicate positions of maxi-
range, no quantum well states are expected\fof and 8; in mum intensities', which should correspond to com.pletc'ed atomic layers. In
ith the observatié‘ﬁ. eagh case, the first peak and the Ia_lst peak should differ in coverage by 4 ML,
agreement wit . . which establishes the absolute thickness scale shown on top of each panel.
Numerous groups have experimented with Pb growth ofrhe difference in coverage between the two cases by almost 1 ML is ac-
Si, mostly by direct deposition on tH& X 7) reconstructed counted for by the difference in initial Pb coverage betweendtend g
Si(111) at various temperatur&s™ The resulting films were ~Phases.
inevitably rough, exhibiting no atomic-layer resolution, as
verified by our extensive, but futile, effort in making a thickness monitor was off by 5%. The bottom panel shows a
smooth film. In the present experiment, the atomic-layer unisimilar analysis for data taken from films deposited op a
formity is achieved by first depositing close to 2 ML of Pb phase substrate. The intensities of the major quantum-well
on Si111)-(7x 7). The sample is then annealed at a tem-peaks attain their maxima at Pb coverages slightly less than
perature above 400°C, and the Pb desorbs gradually as vef=5, 7, and 9, or almost 1 ML more than the corresponding
fied by photoemission measurements of the Blasd Si p  cases for deposition on the phase. This is consistent with
core-level intensitie&” The desorption curve exhibits breaks the calculation that it takes 1.11-0.28=0.83 ML to convert

that correspond to the formation of distinct phateé:**The  the 8 phase to anv phase with a fully populated first ML.
« phase forms at a residual Pb coverage of 1.1 (éguiva- Additional data at intermediate coverages are also consistent.

lent to 4/3 ML of Si coveragg lts structure is a somewhat _ Why does Pb pretreatment promote uniform film forma-
compressed full ML of Pb sitting on a bulk-truncated ion, while direct deposition on &il1-(7x7) does not
Si(111). The B phase forms at a residual Pb coverage ofVOrk? A possible explanation is that ttigx 7) surface, with
0.28 ML (equivalent to 1/3 ML of Si coveragelts structure 'S complicated reconstruction involving adatoms, dimers,
is a bulk-terminated $111) decorated by Pb adatoms ar- COrner holes, and a partial stacking fault, is not smooth on
ranged in a(\e’§><\s’§)R30° configuration to minimize the the atomic scale. These structural featur_es can pin the Pb
number of dangling bonds. Our experiment shows that dep _rqwth locally at low temperatures, resulting m_small crys-
sition of Pb on thex phase, thes phase, or any intermediate allites that are structurally incoherent. Increasing the sub-
hases at a low temperatuE00 K) leads to atomically uni- strate temperature to promote Iong—range.dlﬁusmn_ and struc-
fporm films. The finalpresults are the same for the sgme tot ural coherence leads to formation of islands instead of

ts of Pb d ition including the initial Pb mooth films due to electronic effe&ts? Pretreatment of Si
amounts o eposition Including the initia 'coveragesby Pb leads to a smooth bulk-terminated Si substrate with a
The data set shown in Fig. 1 was taken from films grow

) o Mwell-ordered Pb overlayer. This can be a good template for
on ana phase substrate. Thg intensities of Nres, 7, and 9 smooth growth upon further deposition at low temperatures.
major quantum-well peakd-ig. 1) are measured as a func-

. 1 Pb d " lin Fi h K Our results illustrate an important issue in film growth—the
tion of time of Pb depositiotop panel in Fig. 2 They peak i) surface structure can be a deciding factor for the mor-

at Pr? coverages of 4, 6, and BfML' resp;lgcl'iively, on top of theyyg|ngical development of films. As shown in this study,
a phase based on readings from a thickness monitor. AGsqner conditioning of the starting surface allows us to make
counting for the Pb monolayer already present on dhe | nitorm metallic films on Si, a result of potential interest and

phase, the total Pb thicknesses are then 5, 7, and 9 Ml rtance for Si-based nano- and quantum electronics.
respectively. The layer-by-layer variation allows us to take
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